注重体验与质量的电子书资源下载网站
分类于: 编程语言 云计算&大数据
简介
零起点TensorFlow与量化交易 豆 0.0分
资源最后更新于 2020-08-18 15:44:08
作者:何海群
出版社:电子工业出版社
出版日期:2018-01
ISBN:9787121335846
文件格式: pdf
标签: Python 量化交易 TensorFlow 金融 量化 计算机科学 计算机 编程
简介· · · · · ·
Python量化回溯、TensorFlow、PyTorch、MXNet深度学习平台以及神经网络模型,都是近年来兴起的前沿科技项目,相关理论、平台、工具目前尚处于摸索阶段。
TensorFlow是近年来影响最大的神经网络、深度学习平台,本书从入门者的角度,对TensorFlow进行了介绍,《零起点TensorFlow与量化交易》中通过大量的实际案例,让初学者快速掌握神经网络和金融量化分析的基本编程,为进一步学习奠定扎实的基础。
《零起点TensorFlow与量化交易》中的案例、程序以教学为主,且进行了高度简化,以便读者能够快速理解相关内容,用最短的时间了解Python量化回溯的整个流程,以及数据分析、机器学习、神经网络的应用。
《零起点TensorFlow与量化交易》仅仅作为入门课程,具体的实盘策略,有待广大读者通过进一步深入学习TensorFlow、...
目录
第1章 TensorFlow概述 1
1.1 TensorFlow要点概括 2
1.2 TensorFlow简化接口 2
1.3 Keras简介 3
1.4 运行环境模块的安装 4
1.4.1 CUDA运行环境的安装 4
案例1-1:重点模块版本测试 5
案例1-2:GPU开发环境测试 8
1.4.2 GPU平台运行结果 9
第2章 无数据不量化(上) 12
2.1 金融数据源 13
2.1.1 TopDat金融数据集 14
2.1.2 量化分析与试错成本 15
2.2 OHLC金融数据格式 16
案例2-1:金融数据格式 17
2.3 K线图 18
案例2-2:绘制金融数据K线图 19
2.4 Tick数据格式 22
案例2-3:Tick数据格式 23
2.4.1 Tick数据与分时数据转换 25
案例2-4:分时数据 25
2.4.2 resample函数 26
2.4.3 分时数据 26
2.5 离线金融数据集 29
案例2-5:TopDat金融数据集的日线数据 29
案例2-6:TopDat金融数据集的Tick数据 31
2.6 TopDown金融数据下载 33
案例2-7:更新单一A股日线数据 34
案例2-8:批量更新A股日线数据 37
2.6.1 Tick数据与分时数据 40
案例2-9:更新单一A股分时数据 40
案例2-10:批量更新分时数据 43
2.6.2 Tick数据与实时数据 45
案例2-11:更新单一实时数据 45
案例2-12:更新全部实时数据 48
第3章 无数据不量化(下) 51
3.1 均值优先 51
案例3-1:均值计算与价格曲线图 52
3.2 多因子策略和泛因子策略 54
3.2.1 多因子策略 54
3.2.2 泛因子策略 55
案例3-2:均线因子 55
3.3 “25日神定律” 59
案例3-3:时间因子 61
案例3-4:分时时间因子 63
3.4 TA-Lib金融指标 66
3.5 TQ智能量化回溯系统 70
3.6 全内存计算 70
案例3-5:增强版指数索引 71
案例3-6:AI版索引数据库 73
3.7 股票池 77
案例3-7:股票池的使用 77
3.8 TQ_bar全局变量类 81
案例3-8:TQ_bar初始化 82
案例3-9:TQ版本日线数据 85
3.9 大盘指数 87
案例3-10:指数日线数据 88
案例3-11:TQ版本指数K线图 89
案例3-12:个股和指数曲线对照图 92
3.10 TDS金融数据集 96
案例3-13:TDS衍生数据 98
案例3-14:TDS金融数据集的制作 102
案例3-15:TDS金融数据集2.0 105
案例3-16:读取TDS金融数据集 108
第4章 人工智能与趋势预测 112
4.1 TFLearn简化接口 112
4.2 人工智能与统计关联度分析 113
4.3 关联分析函数corr 113
4.3.1 Pearson相关系数 114
4.3.2 Spearman相关系数 114
4.3.3 Kendall相关系数 115
4.4 open(开盘价)关联性分析 115
案例4-1:open关联性分析 115
4.5 数值预测与趋势预测 118
4.5.1 数值预测 119
4.5.2 趋势预测 120
案例4-2:ROC计算 120
案例4-3:ROC与交易数据分类 123
4.6 n+1大盘指数预测 128
4.6.1 线性回归模型 128
案例4-4:上证指数n+1的开盘价预测 129
案例4-5:预测数据评估 133
4.6.2 效果评估函数 136
4.6.3 常用的评测指标 138
4.7 n+1大盘指数趋势预测 139
案例4-6:涨跌趋势归一化分类 140
案例4-7:经典版涨跌趋势归一化分类 143
4.8 One-Hot 145
案例4-8:One-Hot格式 146
4.9 DNN模型 149
案例4-9:DNN趋势预测 150
第5章 单层神经网络预测股价 156
5.1 Keras简化接口 156
5.2 单层神经网络 158
案例5-1:单层神经网络模型 158
5.3 神经网络常用模块 168
案例5-2:可视化神经网络模型 170
案例5-3:模型读写 174
案例5-4:参数调优入门 177
第6章 MLP与股价预测 182
6.1 MLP 182
案例6-1:MLP价格预测模型 183
6.2 神经网络模型应用四大环节 189
案例6-2:MLP模型评估 190
案例6-3:优化MLP价格预测模型 194
案例6-4:优化版MLP模型评估 197
第7章 RNN与趋势预测 200
7.1 RNN 200
7.2 IRNN与趋势预测 201
案例7-1:RNN趋势预测模型 201
案例7-2:RNN模型评估 209
案例7-3:RNN趋势预测模型2 211
案例7-4:RNN模型2评估 214
第8章 LSTM与量化分析 217
8.1 LSTM模型 217
8.1.1 数值预测 218
案例8-1:LSTM价格预测模型 219
案例8-2:LSTM价格预测模型评估 226
8.1.2 趋势预测 230
案例8-3:LSTM股价趋势预测模型 231
案例8-4:LSTM趋势模型评估 239
8.2 LSTM量化回溯分析 242
8.2.1 构建模型 243
案例8-5:构建模型 243
8.2.2 数据整理 251
案例8-6:数据整理 251
8.2.3 回溯分析 262
案例8-7:回溯分析 262
8.2.4 专业回报分析 268
案例8-8:量化交易回报分析 268
8.3 完整的LSTM量化分析程序 279
案例8-9:LSTM量化分析程序 280
8.3.1 数据整理 280
8.3.2 量化回溯 284
8.3.3 回报分析 285
8.3.4 专业回报分析 288
第9章 日线数据回溯分析 293
9.1 数据整理 293
案例9-1:数据更新 294
案例9-2:数据整理 296
9.2 回溯分析 307
9.2.1 回溯主函数 307
9.2.2 交易信号 308
9.3 交易接口函数 309
案例9-3:回溯分析 309
案例9-4:多模式回溯分析 316
第10章 Tick数据回溯分析 318
10.1 ffn金融模块库 318
案例10-1:ffn功能演示 318
案例10-2:量化交易回报分析 330
案例10-3:完整的量化分析程序 343
10.2 Tick分时数据量化分析 357
案例10-4:Tick分时量化分析程序 357
总结 371
附录A TensorFlow 1.1函数接口变化 372
附录B 神经网络常用算法模型 377
附录C 机器学习常用算法模型 414
1.1 TensorFlow要点概括 2
1.2 TensorFlow简化接口 2
1.3 Keras简介 3
1.4 运行环境模块的安装 4
1.4.1 CUDA运行环境的安装 4
案例1-1:重点模块版本测试 5
案例1-2:GPU开发环境测试 8
1.4.2 GPU平台运行结果 9
第2章 无数据不量化(上) 12
2.1 金融数据源 13
2.1.1 TopDat金融数据集 14
2.1.2 量化分析与试错成本 15
2.2 OHLC金融数据格式 16
案例2-1:金融数据格式 17
2.3 K线图 18
案例2-2:绘制金融数据K线图 19
2.4 Tick数据格式 22
案例2-3:Tick数据格式 23
2.4.1 Tick数据与分时数据转换 25
案例2-4:分时数据 25
2.4.2 resample函数 26
2.4.3 分时数据 26
2.5 离线金融数据集 29
案例2-5:TopDat金融数据集的日线数据 29
案例2-6:TopDat金融数据集的Tick数据 31
2.6 TopDown金融数据下载 33
案例2-7:更新单一A股日线数据 34
案例2-8:批量更新A股日线数据 37
2.6.1 Tick数据与分时数据 40
案例2-9:更新单一A股分时数据 40
案例2-10:批量更新分时数据 43
2.6.2 Tick数据与实时数据 45
案例2-11:更新单一实时数据 45
案例2-12:更新全部实时数据 48
第3章 无数据不量化(下) 51
3.1 均值优先 51
案例3-1:均值计算与价格曲线图 52
3.2 多因子策略和泛因子策略 54
3.2.1 多因子策略 54
3.2.2 泛因子策略 55
案例3-2:均线因子 55
3.3 “25日神定律” 59
案例3-3:时间因子 61
案例3-4:分时时间因子 63
3.4 TA-Lib金融指标 66
3.5 TQ智能量化回溯系统 70
3.6 全内存计算 70
案例3-5:增强版指数索引 71
案例3-6:AI版索引数据库 73
3.7 股票池 77
案例3-7:股票池的使用 77
3.8 TQ_bar全局变量类 81
案例3-8:TQ_bar初始化 82
案例3-9:TQ版本日线数据 85
3.9 大盘指数 87
案例3-10:指数日线数据 88
案例3-11:TQ版本指数K线图 89
案例3-12:个股和指数曲线对照图 92
3.10 TDS金融数据集 96
案例3-13:TDS衍生数据 98
案例3-14:TDS金融数据集的制作 102
案例3-15:TDS金融数据集2.0 105
案例3-16:读取TDS金融数据集 108
第4章 人工智能与趋势预测 112
4.1 TFLearn简化接口 112
4.2 人工智能与统计关联度分析 113
4.3 关联分析函数corr 113
4.3.1 Pearson相关系数 114
4.3.2 Spearman相关系数 114
4.3.3 Kendall相关系数 115
4.4 open(开盘价)关联性分析 115
案例4-1:open关联性分析 115
4.5 数值预测与趋势预测 118
4.5.1 数值预测 119
4.5.2 趋势预测 120
案例4-2:ROC计算 120
案例4-3:ROC与交易数据分类 123
4.6 n+1大盘指数预测 128
4.6.1 线性回归模型 128
案例4-4:上证指数n+1的开盘价预测 129
案例4-5:预测数据评估 133
4.6.2 效果评估函数 136
4.6.3 常用的评测指标 138
4.7 n+1大盘指数趋势预测 139
案例4-6:涨跌趋势归一化分类 140
案例4-7:经典版涨跌趋势归一化分类 143
4.8 One-Hot 145
案例4-8:One-Hot格式 146
4.9 DNN模型 149
案例4-9:DNN趋势预测 150
第5章 单层神经网络预测股价 156
5.1 Keras简化接口 156
5.2 单层神经网络 158
案例5-1:单层神经网络模型 158
5.3 神经网络常用模块 168
案例5-2:可视化神经网络模型 170
案例5-3:模型读写 174
案例5-4:参数调优入门 177
第6章 MLP与股价预测 182
6.1 MLP 182
案例6-1:MLP价格预测模型 183
6.2 神经网络模型应用四大环节 189
案例6-2:MLP模型评估 190
案例6-3:优化MLP价格预测模型 194
案例6-4:优化版MLP模型评估 197
第7章 RNN与趋势预测 200
7.1 RNN 200
7.2 IRNN与趋势预测 201
案例7-1:RNN趋势预测模型 201
案例7-2:RNN模型评估 209
案例7-3:RNN趋势预测模型2 211
案例7-4:RNN模型2评估 214
第8章 LSTM与量化分析 217
8.1 LSTM模型 217
8.1.1 数值预测 218
案例8-1:LSTM价格预测模型 219
案例8-2:LSTM价格预测模型评估 226
8.1.2 趋势预测 230
案例8-3:LSTM股价趋势预测模型 231
案例8-4:LSTM趋势模型评估 239
8.2 LSTM量化回溯分析 242
8.2.1 构建模型 243
案例8-5:构建模型 243
8.2.2 数据整理 251
案例8-6:数据整理 251
8.2.3 回溯分析 262
案例8-7:回溯分析 262
8.2.4 专业回报分析 268
案例8-8:量化交易回报分析 268
8.3 完整的LSTM量化分析程序 279
案例8-9:LSTM量化分析程序 280
8.3.1 数据整理 280
8.3.2 量化回溯 284
8.3.3 回报分析 285
8.3.4 专业回报分析 288
第9章 日线数据回溯分析 293
9.1 数据整理 293
案例9-1:数据更新 294
案例9-2:数据整理 296
9.2 回溯分析 307
9.2.1 回溯主函数 307
9.2.2 交易信号 308
9.3 交易接口函数 309
案例9-3:回溯分析 309
案例9-4:多模式回溯分析 316
第10章 Tick数据回溯分析 318
10.1 ffn金融模块库 318
案例10-1:ffn功能演示 318
案例10-2:量化交易回报分析 330
案例10-3:完整的量化分析程序 343
10.2 Tick分时数据量化分析 357
案例10-4:Tick分时量化分析程序 357
总结 371
附录A TensorFlow 1.1函数接口变化 372
附录B 神经网络常用算法模型 377
附录C 机器学习常用算法模型 414