logo
分类于: 云计算&大数据 编程语言

简介

Machine Learning: A Probabilistic Perspective

Machine Learning: A Probabilistic Perspective 9.0分

资源最后更新于 2020-08-23 08:21:22

作者:Kevin P·Murphy

出版社:The MIT Press

出版日期:2012-01

ISBN:9780262018029

文件格式: pdf

标签: 机器学习 MachineLearning 数据挖掘 计算机 计算机科学 概率 统计 人工智能

简介· · · · · ·

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, a unified, probabilistic a...

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

Chapter 1: Introduction
Chapter 2: Probability
Chapter 3: Statistics
Chapter 4: Gaussian models
Chapter 5: Generative models for classification
Chapter 6: Discriminative linear models
Chapter 7: Graphical Models
Chapter 8: Decision theory
Chapter 9: Mixture models and the EM algorithm
Chapter 10: Latent Linear models
Chapter 11: Hierarchical Bayes
Chapter 12: Sparce Linear Models
Chapter 13: Kernels
Chapter 14: Gaussian processes
Chapter 15: Adaptive basis function models
Chapter 16: Markov and hidden Markov Models
Chapter 17: State space models
Chapter 18: Conditional random fields
Chapter 19: Exact inference algorithms for graphical models
Chapter 20: Mean field inference algorithms
Chapter 21: Other variational inference algorithms
Chapter 22: Monte Carlo inference algorithms
Chapter 23: MCMC inference algorithms
Chapter 24: Clustering
Chapter 25: Graphical model structure learning
Chapter 26: Two-layer latent variable models
Chapter 27: Deep learning