logo
分类于: 职场办公 人工智能

简介

Interpretable Machine Learning

Interpretable Machine Learning 7.4分

资源最后更新于 2020-08-23 08:21:33

作者:[德] Christoph Molnar

出版社:Lulu Press

出版日期:2019-01

ISBN:9780244768522

文件格式: pdf

标签: 机器学习 计算机 Interpretable 计算机科学 美国 统计 MachineLearning En.

简介· · · · · ·

This book is about making machine learning models and their decisions interpretable.

After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated loca...

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

Preface
1 Introduction
1.1 Story Time
1.2 What Is Machine Learning?
1.3 Terminology
2 Interpretability
2.1 Importance of Interpretability
2.2 Taxonomy of Interpretability Methods
2.3 Scope of Interpretability
2.4 Evaluation of Interpretability
2.5 Properties of Explanations
2.6 Human-friendly Explanations
3 Datasets
3.1 Bike Rentals (Regression)
3.2 YouTube Spam Comments (Text Classification)
3.3 Risk Factors for Cervical Cancer (Classification)
4 Interpretable Models
4.1 Linear Regression
4.2 Logistic Regression
4.3 GLM, GAM and more
4.4 Decision Tree
4.5 Decision Rules
4.6 RuleFit
4.7 Other Interpretable Models
5 Model-Agnostic Methods
5.1 Partial Dependence Plot (PDP)
5.2 Individual Conditional Expectation (ICE)
5.3 Accumulated Local Effects (ALE) Plot
5.4 Feature Interaction
5.5 Permutation Feature Importance
5.6 Global Surrogate
5.7 Local Surrogate (LIME)
5.8 Scoped Rules (Anchors)
5.9 Shapley Values
5.10 SHAP (SHapley Additive exPlanations)
6 Example-Based Explanations
6.1 Counterfactual Explanations
6.2 Adversarial Examples
6.3 Prototypes and Criticisms
6.4 Influential Instances
7 Neural Network Interpretation
7.1 Learned Features
8 A Look into the Crystal Ball
8.1 The Future of Machine Learning
8.2 The Future of Interpretability
9 Contribute to the Book
10 Citing this Book
11 Translations
12 Acknowledgements
References
R Packages Used for Examples