注重体验与质量的电子书资源下载网站
分类于: 计算机基础 云计算&大数据 人工智能
简介

深度学习框架PyTorch入门与实践 豆 6.6分
资源最后更新于 2020-03-29 04:12:13
作者:陈云
出版社:出版社电子工业出版社
出版日期:2018-01
ISBN:9787121330773
文件格式: pdf
简介· · · · · ·
本书从多维数组Tensor开始,循序渐进地带领读者了解PyTorch各方面的基础知识,并结合基础知识和前沿研究,带领读者从零开始完成几个经典有趣的深度学习小项目,包括GAN生成动漫头像、AI滤镜、AI写诗等。本书没有简单机械地介绍各个函数接口的使用,而是尝试分门别类、循序渐进地向读者介绍PyTorch的知识,希望读者对PyTorch有一个完整的认识。本书内容由浅入深,无论是深度学习的初学者,还是第一次接触PyTorch的研究人员,都能在学习本书的过程中快速掌握PyTorch。即使是有一定PyTorch使用经验的用户,也能够从本书中获得对PyTorch不一样的理解。陈云,Python程序员、Linux爱好者和PyTorch源码贡献者。主要研究方向包括计算机视觉和机器学习。“2017知乎看山杯机器学习挑战赛”一等奖,“2017天池医疗AI大赛”第八名。热衷于推广PyTorch,并有丰富的使用经验,活跃于PyTorch论坛和知乎相关板块。
目录
前言
1 PyTorch简介
1.1 PyTorch的诞生
1.2 常见的深度学习框架简介
1.3 属于动态图的未来
1.4 为什么选择PyTorch
1.5 星火燎原
1.6 fast.ai放弃Keras+TensorFlow选择PyTorch
2 快速入门
2.1 安装与配置
2.2 PyTorch入门第一步
3 Tensor和autograd
3.1 Tensor
3.2 autograd
4 神经网络工具箱nn
4.1 nn.Module
4.2 常用的神经网络层
4.3 优化器
4.4 nn.functional
4.5 初始化策略
4.6 nn.Module深入分析
4.7 nn和autograd的关系
4.8 小试牛刀:用50行代码搭建ResNet
5 PyTorch中常用的工具
5.1 数据处理
5.2 计算机视觉工具包:torchvision
5.3 可视化工具
5.4 使用GPU加速:cuda
5.5 持久化
6 PyTorch实战指南
6.1 编程实战:猫和狗二分类
6.2 PyTorch Debug指南
7 AI插画师:生成对抗网络
7.1 GAN的原理简介
7.2 用GAN生成动漫头像
7.3 实验结果分析
8 AI艺术家:神经网络风格迁移
8.1 风格迁移原理介绍
8.2 用PyTorch实现风格迁移
8.3 实验结果分析
9 AI诗人:用RNN写诗
9.1 自然语言处理的基础知识
9.2 CharRNN
9.3 用PyTorch实现CharRNN
9.4 实验结果分析
10 Image Caption:让神经网络看图讲故事
10.1 图像描述介绍
10.2 数据
10.3 模型与训练
10.4 实验结果分析
11 展望与未来
11.1 PyTorch的局限与发展
11.2 使用建议