logo
分类于: 互联网 编程语言

简介

解析深度学习:卷积神经网络原理与视觉实践

解析深度学习:卷积神经网络原理与视觉实践 8.2分

资源最后更新于 2020-09-23 15:16:06

作者:魏秀参

出版社:电子工业出版社

出版日期:2018-01

ISBN:9787121345289

文件格式: pdf

标签: 深度学习 卷积神经网络 机器学习 计算机视觉 人工智能 AI 计算机科学 计算机

简介· · · · · ·

深度学习,特别是深度卷积神经网络是人工智能的重要分支领域,卷积神经网络技术也被广泛应用于各种现实场景,在许多问题上都取得了超越人类智能的结果。本书作为该领域的入门书籍,在内容上涵盖深度卷积神经网络的基础知识和实践应用两大方面。《解析深度学习:卷积神经网络原理与视觉实践》共14 章,分为三个部分:第一部分为绪论;第二部分 (第1~4 章)介绍卷积神经网络的基础知识、基本部件、经典结构和模型压缩等基础理论内容;第三部分(第5~14 章)介绍深度卷积神经网络自数据准备开始,到模型参数初始化、不同网络部件的选择、网络配置、网络模型训练、不平衡数据处理,最终到模型集成等实践应用技巧和经验。《解析深度学习:卷积神经网络原理与视觉实践》并不是一本编程类书籍,而是希望通过“基础知识”和“实践技巧”两方面使读者从更高维度了解、掌握并成功构建针对自身应用问题的深度卷积神...

直接下载

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

第一部分绪论1
0.1 引言 . 2
0.2 什么是深度学习 3
0.3 深度学习的前世今生 . 6
第二部分基础理论篇9
1 卷积神经网络基础知识10
1.1 发展历程 11
1.2 基本结构 13
1.3 前馈运算 16
1.4 反馈运算 16
1.5 小结 . 19
2 卷积神经网络基本部件21
2.1 “端到端”思想 21
2.2 网络符号定义 . 23
2.3 卷积层 . 24
2.3.1 什么是卷积 24
2.3.2 卷积操作的作用 27
2.4 汇合层 . 28
2.4.1 什么是汇合 29
2.4.2 汇合操作的作用 30
2.5 激活函数 31
2.6 全连接层 33
2.7 目标函数 34
2.8 小结 . 34
3 卷积神经网络经典结构35
3.1 CNN 网络结构中的重要概念 . 35
3.1.1 感受野 . 35
3.1.2 分布式表示 37
3.1.3 深度特征的层次性 39
3.2 经典网络案例分析 . 42
3.2.1 Alex-Net 网络模型 . 42
3.2.2 VGG-Nets 网络模型 46
3.2.3 Network-In-Network 48
3.2.4 残差网络模型 . 49
3.3 小结 . 54
4 卷积神经网络的压缩56
4.1 低秩近似 58
4.2 剪枝与稀疏约束 60
4.3 参数量化 64
4.4 二值网络 68
4.5 知识蒸馏 71
4.6 紧凑的网络结构 74
4.7 小结 . 76
第三部分实践应用篇77
5 数据扩充78
5.1 简单的数据扩充方式 . 78
5.2 特殊的数据扩充方式 . 80
5.2.1 Fancy PCA . 80
5.2.2 监督式数据扩充 80
5.3 小结 . 82
6 数据预处理83
7 网络参数初始化85
7.1 全零初始化 . 86
7.2 随机初始化 . 86
7.3 其他初始化方法 90
7.4 小结 . 90
8 激活函数91
8.1 Sigmoid 型函数 . 92
8.2 tanh(x) 型函数 . 93
8.3 修正线性单元(ReLU) 93
8.4 Leaky ReLU . 94
8.5 参数化ReLU 95
8.6 随机化ReLU 97
8.7 指数化线性单元(ELU) . 98
8.8 小结 . 99
9 目标函数100
9.1 分类任务的目标函数 . 100
9.1.1 交叉熵损失函数 101
9.1.2 合页损失函数 . 101
9.1.3 坡道损失函数 . 101
9.1.4 大间隔交叉熵损失函数 103
9.1.5 中心损失函数 . 105
9.2 回归任务的目标函数 . 107
9.2.1 ℓ1 损失函数 108
9.2.2 ℓ2 损失函数 108
9.2.3 Tukey’s biweight 损失函数 109
9.3 其他任务的目标函数 . 109
9.4 小结 . 111
10 网络正则化113
10.1 ℓ2 正则化 114
10.2 ℓ1 正则化 115
10.3 最大范数约束 . 115
10.4 随机失活 116
10.5 验证集的使用 . 118
10.6 小结 . 119
11 超参数设定和网络训练120
11.1 网络超参数设定 120
11.1.1 输入数据像素大小 120
11.1.2 卷积层参数的设定 121
11.1.3 汇合层参数的设定 122
11.2 训练技巧 123
11.2.1 训练数据随机打乱 123
11.2.2 学习率的设定 . 123
11.2.3 批规范化操作 . 125
11.2.4 网络模型优化算法选择 127
11.2.5 微调神经网络 . 132
11.3 小结 . 133
12 不平衡样本的处理135
12.1 数据层面处理方法 . 136
12.1.1 数据重采样 136
12.1.2 类别平衡采样 . 137
12.2 算法层面处理方法 . 138
12.2.1 代价敏感方法 . 139
12.2.2 代价敏感法中权重的指定方式 140
12.3 小结 . 142
13 模型集成方法143
13.1 数据层面的集成方法 . 143
13.1.1 测试阶段数据扩充 143
13.1.2 “简易集成”法 144
13.2 模型层面的集成方法 . 144
13.2.1 单模型集成 144
13.2.2 多模型集成 146
13.3 小结 . 149
14 深度学习开源工具简介151
14.1 常用框架对比 . 151
14.2 常用框架的各自特点 . 153
14.2.1 Caffe 153
14.2.2 Deeplearning4j . 153
14.2.3 Keras 154
14.2.4 MXNet . 155
14.2.5 MatConvNet 155
14.2.6 TensorFlow . 155
14.2.7 Theano . 156
14.2.8 Torch 157
A 向量、矩阵及其基本运算158
B 随机梯度下降162
C 链式法则165
参考文献167
索引181