logo
分类于: 编程语言 计算机基础

简介

Python机器学习(原书第2版)

Python机器学习(原书第2版) 0.0分

资源最后更新于 2020-09-27 15:06:24

作者:[美] 塞巴斯蒂安·拉施卡(Sebastian Raschka)

译者:陈斌

出版社:机械工业出版社

出版日期:2018-01

ISBN:9787111611509

文件格式: pdf

标签: Python 机器学习 人工智能 计算机科学 ML 计算机 数据科学 数据分析

简介· · · · · ·

本书自第1版出版以来,备受广大读者欢迎。与同类书相比,本书除了介绍如何用Python和基于Python的机器学习软件库进行实践外,还对机器学习概念的必要细节进行讨论,同时对机器学习算法的工作原理、使用方法以及如何避免掉入常见的陷阱提供直观且翔实的解释,是Python机器学习入门必读之作。

本书将带领你进入预测分析的世界,并展示为什么Python会成为数据科学领域首屈一指的计算机语言。如果你想更好地从数据中得到问题的答案,或者想要提升并扩展现有机器学习系统的性能,那么这本基于数据科学实践的书籍非常值得一读。它的内容涵盖了众多高效Python库,包括scikit-learn、Keras和TensorFlow等,系统性地梳理和分析了各种经典算法,并通过Python语言以具体代码示例的方式深入浅出地介绍了各种算法的应用,还给出了从情感分析到神经网络的一些实践...

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

译者序
关于作者
关于审校人员
前言
第1章 赋予计算机从数据中学习的能力 1
1.1 构建把数据转换为知识的智能机器 1
1.2 三种不同类型的机器学习 1
1.2.1 用有监督学习预测未来 2
1.2.2 用强化学习解决交互问题 3
1.2.3 用无监督学习发现隐藏结构 4
1.3 基本术语与符号 4
1.4 构建机器学习系统的路线图 6
1.4.1 预处理—整理数据 6
1.4.2 训练和选择预测模型 7
1.4.3 评估模型和预测新样本数据 7
1.5 用Python进行机器学习 7
1.5.1 从Python包索引安装Python和其他包 8
1.5.2 采用Anaconda Python和软件包管理器 8
1.5.3 科学计算、数据科学和机器学习软件包 8
1.6 小结 9
第2章 训练简单的机器学习分类算法 10
2.1 人工神经元—机器学习早期历史一瞥 10
2.1.1 人工神经元的正式定义 11
2.1.2 感知器学习规则 12
2.2 在Python中实现感知器学习算法 14
2.2.1 面向对象的感知器API 14
2.2.2 在鸢尾花数据集上训练感知器模型 16
2.3 自适应神经元和学习收敛 20
2.3.1 梯度下降为最小代价函数 21
2.3.2 用Python实现Adaline 22
2.3.3 通过调整特征大小改善梯度下降 25
2.3.4 大规模机器学习与随机梯度下降 27
2.4 小结 30
第3章 scikit-learn机器学习分类器一览 32
3.1 选择分类算法 32
3.2 了解scikit-learn软件库的第一步—训练感知器 32
3.3 基于逻辑回归的分类概率建模 37
3.3.1 逻辑回归的直觉与条件概率 37
3.3.2 学习逻辑代价函数的权重 39
3.3.3 把转换的Adaline用于逻辑回归算法 41
3.3.4 用scikit-learn训练逻辑回归模型 44
3.3.5 通过正则化解决过拟合问题 45
3.4 支持向量机的最大余量分类 47
3.4.1 最大边际的直觉 48
3.4.2 用松弛变量处理非线性可分 48
3.4.3 其他的scikit-learn 实现 50
3.5 用核支持向量机求解非线性问题 50
3.5.1 处理线性不可分数据的核方法 50
3.5.2 利用核技巧,发现高维空间的分离超平面 52
3.6 决策树学习 55
3.6.1 最大限度地获取信息—获得最大收益 55
3.6.2 构建决策树 58
3.6.3 通过随机森林组合多个决策树 61
3.7 K-近邻—一种懒惰的学习算法 63
3.8 小结 65
第4章 构建良好的训练集——预处理 66
4.1 处理缺失数据 66
4.1.1 识别数据中的缺失数值 66
4.1.2 删除缺失的数据 67
4.1.3 填补缺失的数据 68
4.1.4 了解scikit-learn评估器API 68
4.2 处理分类数据 69
4.2.1 名词特征和序数特征 69
4.2.2 映射序数特征 70
4.2.3 分类标签编码 70
4.2.4 为名词特征做热编码 71
4.3 分裂数据集为独立的训练集和测试集 73
4.4 把特征保持在同一尺度上 75
4.5 选择有意义的特征 76
4.5.1 L1和L2正则化对模型复杂度的惩罚 76
4.5.2 L2正则化的几何解释 77
4.5.3 L1正则化的稀疏解决方案 78
4.5.4 为序数特征选择算法 80
4.6 用随机森林评估特征的重要性 84
4.7 小结 87
第5章 通过降维压缩数据 88
5.1 用主成分分析实现无监督降维 88
5.1.1 主成分分析的主要步骤 88
5.1.2 逐步提取主成分 89
5.1.3 总方差和解释方差 91
5.1.4 特征变换 92
5.1.5 scikit-learn的主成分分析 93
5.2 基于线性判别分析的有监督数据压缩 96
5.2.1 主成分分析与线性判别分析 96
5.2.2 线性判别分析的内部逻辑 97
5.2.3 计算散布矩阵 97
5.2.4 在新的特征子空间选择线性判别式 99
5.2.5 将样本投影到新的特征空间 101
5.2.6 用scikit-learn实现的LDA 101
5.3 非线性映射的核主成分分析 102
5.3.1 核函数与核技巧 103
5.3.2 用Python实现核主成分分析 106
5.3.3 投影新的数据点 111
5.3.4 scikit-learn的核主成分分析 113
5.4 小结 114
第6章 模型评估和超参数调优的最佳实践 115
6.1 用管道方法简化工作流 115
6.1.1 加载威斯康星乳腺癌数据集 115
6.1.2 集成管道中的转换器和评估器 116
6.2 使用k折交叉验证评估模型的性能 118
6.2.1 抵抗方法 118
6.2.2 k折交叉验证 119
6.3 用学习和验证曲线调试算法 122
6.3.1 用学习曲线诊断偏差和方差问题 122
6.3.2 用验证曲线解决过拟合和欠拟合问题 124
6.4 通过网格搜索为机器学习模型调优 126
6.4.1 通过网格搜索为超参数调优 126
6.4.2 以嵌套式交叉验证来选择算法 127
6.5 比较不同的性能评估指标 128
6.5.1 含混矩阵分析 128
6.5.2 优化分类模型的准确度和召回率 129
6.5.3 绘制受试者操作特性图 130
6.5.4 多元分类评分指标 133
6.6 处理类的不平衡问题 133
6.7 小结 135
第7章 综合不同模型的组合学习 136
7.1 集成学习 136
7.2 采用多数票机制的集成分类器 139
7.2.1 实现基于多数票的简单分类器 139
7.2.2 用多数票原则进行预测 143
7.2.3 评估和优化集成分类器 145
7.3 套袋—基于导引样本构建分类器集成 149
7.3.1 套袋简介 150
7.3.2 应用套袋技术对葡萄酒数据集中的样本分类 151
7.4 通过自适应增强来利用弱学习者 153
7.4.1 增强是如何实现的 154
7.4.2 用scikit-learn实现AdaBoost 156
7.5 小结 158
第8章 应用机器学习于情感分析 159
8.1 为文本处理预备好IMDb电影评论数据 159
8.1.1 获取电影评论数据集 159
8.1.2 把电影评论数据预处理成更方便格式的数据 160
8.2 词袋模型介绍 161
8.2.1 把词转换成特征向量 161
8.2.2 通过词频逆反文档频率评估单词相关性 162
8.2.3 清洗文本数据 164
8.2.4 把文档处理为令牌 165
8.3 训练文档分类的逻辑回归模型 166
8.4 处理更大的数据集—在线算法和核心学习 168
8.5 具有潜在狄氏分配的主题建模 171
8.5.1 使用LDA分解文本文档 171
8.5.2 LDA与scikit-learn 172
8.6 小结 174
第9章 将机器学习模型嵌入网络应用 175
9.1 序列化拟合scikit-learn评估器 175
9.2 搭建SQLite数据库存储数据 177
9.3 用Flask开发网络应用 179
9.3.1 第一个Flask网络应用 179
9.3.2 表单验证与渲染 181
9.4 将电影评论分类器转换为网络应用 184
9.4.1 文件与文件夹—研究目录树 185
9.4.2 实现主应用app.py 186
9.4.3 建立评论表单 188
9.4.4 创建一个结果页面的模板 189
9.5 在面向公众的服务器上部署网络应用 190
9.5.1 创建PythonAnywhere账户 190
9.5.2 上传电影分类应用 191
9.5.3 更新电影分类器 191
9.6 小结 193
第10章 用回归分析预测连续目标变量 194
10.1 线性回归简介 194
10.1.1 简单线性回归 194
10.1.2 多元线性回归 195
10.2 探索住房数据集 196
10.2.1 加载住房数据 196
10.2.2 可视化数据集的重要特点 197
10.2.3 用关联矩阵查看关系 198
10.3 普通最小二乘线性回归模型的实现 200
10.3.1 用梯度下降方法求解回归参数 200
10.3.2 通过scikit-learn估计回归模型的系数 203
10.4 利用RANSAC拟合稳健的回归模型 205
10.5 评估线性回归模型的性能 206
10.6 用正则化方法进行回归 209
10.7 将线性回归模型转换为曲线—多项式回归 210
10.7.1 用scikit-learn增加多项式的项 210
10.7.2 为住房数据集中的非线性关系建模 211
10.8 用随机森林处理非线性关系 214
10.8.1 决策树回归 214
10.8.2 随机森林回归 215
10.9 小结 217
第11章 用聚类分析处理无标签数据 218
11.1 用k-均值进行相似性分组 218
11.1.1 scikit-learn的k-均值聚类 218
11.1.2 k-均值++—更聪明地设置初始聚类中心的方法 221
11.1.3 硬聚类与软聚类 222
11.1.4 用肘法求解最佳聚类数 223
11.1.5 通过轮廓图量化聚类质量 224
11.2 把集群组织成有层次的树 228
11.2.1 以自下而上的方式聚类 228
11.2.2 在距离矩阵上进行层次聚类 229
11.2.3 热度图附加树状图 232
11.2.4 scikit-learn凝聚聚类方法 233
11.3 通过DBSCAN定位高密度区域 233
11.4 小结 237
第12章 从零开始实现多层人工神经网络 238
12.1 用人工神经网络为复杂函数建模 238
12.1.1 单层神经网络扼要重述 239
12.1.2 介绍多层神经网络体系 240
12.1.3 利用正向传播激活神经网络 242
12.2 识别手写数字 243
12.2.1 获取MNIST数据集 243
12.2.2 实现一个多层感知器 247
12.3 训练人工神经网络 256
12.3.1 逻辑成本函数的计算 256
12.3.2 开发反向传播的直觉 257
12.3.3 通过反向传播训练神经网络 258
12.4 关于神经网络的收敛性 260
12.5 关于神经网络实现的最后几句话 261
12.6 小结 261
第13章 用TensorFlow并行训练神经网络 262
13.1 TensorFlow与模型训练的性能 262
13.1.1 什么是TensorFlow 263
13.1.2 如何学习TensorFlow 264
13.1.3 学习TensorFlow的第一步 264
13.1.4 使用阵列结构 266
13.1.5 用TensorFlow的底层API开发简单的模型 267
13.2 用TensorFlow的高级 API高效率地训练神经网络 270
13.2.1 用TensorFlow的Layers API构建多层神经网络 270
13.2.2 用Keras研发多层神经网络 274
13.3 多层网络激活函数的选择 277
13.3.1 逻辑函数回顾 278
13.3.2 在多元分类中调用softmax函数评估类别概率 279
13.3.3 利用双曲正切拓宽输出范围 280
13.3.4 修正线性单元激活函数 281
13.4 小结 282
第14章 深入探讨TensorFlow的工作原理 283
14.1 TensorFlow的主要功能 283
14.2 TensorFlow 的排序与张量 284
14.3 了解TensorFlow的计算图 285
14.4 TensorFlow中的占位符 287
14.4.1 定义占位符 287
14.4.2 为占位符提供数据 287
14.4.3 用batchsizes 为数据阵列定义占位符 288
14.5 TensorFlow中的变量 289
14.5.1 定义变量 289
14.5.2 初始化变量 290
14.5.3 变量范围 291
14.5.4 变量复用 292
14.6 建立回归模型 295
14.7 在TensorFlow计算图中用张量名执行对象 297
14.8 在TensorFlow中存储和恢复模型 298
14.9 把张量转换成多维数据阵列 300
14.10 利用控制流构图 303
14.11 用TensorBoard可视化图 305
14.12 小结 308
第15章 深度卷积神经网络图像识别 309
15.1 构建卷积神经网络的模块 309
15.1.1 理解CNN与学习特征的层次 309
15.1.2 执行离散卷积 310
15.1.3 子采样 316
15.2 拼装构建CNN 317
15.2.1 处理多个输入或者彩色频道 317
15.2.2 通过淘汰正则化神经网络 319
15.3 用TensorFlow实现深度卷积神经网络 321
15.3.1 多层CNN体系结构 321
15.3.2 加载和预处理数据 322
15.3.3 用TensorFlow的低级API实现CNN模型 323
15.3.4 用TensorFlow 的Layers API实现CNN 332
15.4 小结 336
第16章 用递归神经网络为序列数据建模 338
16.1 序列数据 338
16.1.1 序列数据建模—顺序很重要 338
16.1.2 表示序列 339
16.1.3 不同类别的序列建模 339
16.2 用于序列建模的RNN 340
16.2.1 理解RNN的结构和数据流 340
16.2.2 在RNN中计算激活值 341
16.2.3 长期交互学习的挑战 343
16.2.4 LSTM单元 343
16.3 用TensorFlow实现多层RNN序列建模 345
16.4 项目一:利用多层RNN对IMDb电影评论进行情感分析 345
16.4.1 准备数据 345
16.4.2 嵌入式 348
16.4.3 构建一个RNN模型 350
16.4.4 情感RNN类构造器 350
16.4.5 build方法 351
16.4.6 train方法 353
16.4.7 predict方法 354
16.4.8 创建SentimentRNN类的实例 355
16.4.9 训练与优化情感分析RNN模型 355
16.5 项目二:用TensorFlow实现字符级 RNN语言建模 356
16.5.1 准备数据 356
16.5.2 构建字符级RNN语言模型 359
16.5.3 构造器 359
16.5.4 build方法 360
16.5.5 train方法 362
16.5.6 sample方法 362
16.5.7 创建和训练CharRNN模型 364
16.5.8 处于取样状态的CharRNN模型 364
16.6 总结 365