注重体验与质量的电子书资源下载网站
分类于: 职场办公 设计
简介
集成学习:基础与算法 豆 0.0分
资源最后更新于 2020-09-27 15:06:31
作者:周志华
译者:李楠
出版社:电子工业出版社
出版日期:2020-01
ISBN:9787121390777
文件格式: pdf
标签: 机器学习 人工智能 计算机 数据科学 数学 周志华 Ensemble 编程
简介· · · · · ·
本书是目前国内独本系统性阐述集成学习的著作。
集成学习的思路是通过结合多个学习器来解决问题,它在实践中大获成功——人称“从业者应学应会的大杀器”之一。
化繁为简:将复杂的原理简化为易于理解的表达,通俗易懂;
结构合理:兼具广度与深度。既阐述该领域的重要话题,又详释了重要算法的实现并辅以伪代码,更易上手;
注重实践:阐述集成学习在多个领域的应用,如计算机视觉、医疗、信息安全和数据挖掘竞赛等;
拓展阅读:提供丰富的参考资料,读者可按图索骥、自行深入学习;
新手通过本书很容易理解并掌握集成学习的思路与精粹;
老手通过本书能学会不少技巧并深化对集成学习的理论理解,更好地指导研究和实践。
集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功。
《集成学习:基础与算法》分为三部分。第一部分主要介绍集成学...
目录
第1章 绪 论 1
1.1 基本概念 1
1.2 常用学习算法 3
1.2.1 线性判别分析 3
1.2.2 决策树 4
1.2.3 神经网络 6
1.2.4 朴素贝叶斯 8
1.2.5 k-近邻 9
1.2.6 支持向量机和核方法 9
1.3 评估和对比 12
1.4 集成学习方法 14
1.5 集成学习方法的应用 16
1.6 拓展阅读 19
第2章 Boosting 21
2.1 Boosting 过程 21
2.2 AdaBoost 算法 22
2.3 说明性举例 26
2.4 理论探讨 29
2.4.1 基本分析 29
2.4.2 间隔解释 30
2.4.3 统计视角 32
2.5 多分类问题 35
2.6 容噪能力 37
2.7 拓展阅读 40
第3章 Bagging 43
3.1 两种集成范式 43
3.2 Bagging 算法 44
3.3 说明性举例 45
3.4 理论探讨 48
3.5 随机树集成 52
3.5.1 随机森林 52
3.5.2 随机化谱 55
3.5.3 随机森林用于密度估计 56
3.5.4 随机森林用于异常检测 58
3.6 拓展阅读 60
第4章 结合方法 61
4.1 结合带来的益处 61
4.2 均值法 62
4.2.1 简单平均法 62
4.2.2 加权平均法 63
4.3 投票法 65
4.3.1 绝对多数投票法 65
4.3.2 相对多数投票法 66
4.3.3 加权投票法 67
4.3.4 软投票法 68
4.3.5 理论探讨 70
4.4 学习结合法 76
4.4.1 Stacking 76
4.4.2 无限集成 78
4.5 其他结合方法 79
4.5.1 代数法 80
4.5.2 行为知识空间法 81
4.5.3 决策模板法 81
4.6 相关方法 82
4.6.1 纠错输出编码法 82
4.6.2 动态分类器选择法 85
4.6.3 混合专家模型 86
4.7 拓展阅读 87
第5章 多样性 91
5.1 集成多样性 91
5.2 误差分解 92
5.2.1 误差-分歧分解 92
5.2.2 偏差-方差-协方差分解 94
5.3 多样性度量 96
5.3.1 成对度量 96
5.3.2 非成对度量 97
5.3.3 小结和可视化 100
5.3.4 多样性度量的局限 101
5.4 信息论多样性 102
5.4.1 信息论和集成 102
5.4.2 交互信息多样性 103
5.4.3 多信息多样性 104
5.4.4 估计方法 105
5.5 多样性增强 106
5.6 拓展阅读 108
第6章 集成修剪 109
6.1 何谓集成修剪 109
6.2 多比全好 110
6.3 修剪方法分类 113
6.4 基于排序的修剪 114
6.5 基于聚类的修剪 117
6.6 基于优化的修剪 117
6.6.1 启发式优化修剪 118
6.6.2 数学规划修剪 118
6.6.3 概率修剪 121
6.7 拓展阅读 122
第7章 聚类集成 125
7.1 聚类 125
7.1.1 聚类方法 125
7.1.2 聚类评估 127
7.1.3 为什么要做聚类集成 129
7.2 聚类集成方法分类 130
7.3 基于相似度的方法 132
7.4 基于图的方法 133
7.5 基于重标记的方法 136
7.6 基于变换的方法 140
7.7 拓展阅读 143
第8章 进阶议题 145
8.1 半监督学习 145
8.1.1 未标记数据的效用 145
8.1.2 半监督学习的集成学习方法 146
8.2 主动学习 151
8.2.1 人为介入的效用 151
8.2.2 基于集成的主动学习 152
8.3 代价敏感学习 153
8.3.1 不均等代价下的学习 153
8.3.2 代价敏感学习的集成方法 154
8.4 类别不平衡学习 158
8.4.1 类别不平衡 158
8.4.2 类别不平衡学习的性能评估 160
8.4.3 类别不平衡学习的集成方法 163
8.5 提升可解释性 166
8.5.1 集成约简 166
8.5.2 规则抽取 167
8.5.3 可视化 168
8.6 未来的研究方向 169
8.7 拓展阅读 171
参考文献 173
索引 203
1.1 基本概念 1
1.2 常用学习算法 3
1.2.1 线性判别分析 3
1.2.2 决策树 4
1.2.3 神经网络 6
1.2.4 朴素贝叶斯 8
1.2.5 k-近邻 9
1.2.6 支持向量机和核方法 9
1.3 评估和对比 12
1.4 集成学习方法 14
1.5 集成学习方法的应用 16
1.6 拓展阅读 19
第2章 Boosting 21
2.1 Boosting 过程 21
2.2 AdaBoost 算法 22
2.3 说明性举例 26
2.4 理论探讨 29
2.4.1 基本分析 29
2.4.2 间隔解释 30
2.4.3 统计视角 32
2.5 多分类问题 35
2.6 容噪能力 37
2.7 拓展阅读 40
第3章 Bagging 43
3.1 两种集成范式 43
3.2 Bagging 算法 44
3.3 说明性举例 45
3.4 理论探讨 48
3.5 随机树集成 52
3.5.1 随机森林 52
3.5.2 随机化谱 55
3.5.3 随机森林用于密度估计 56
3.5.4 随机森林用于异常检测 58
3.6 拓展阅读 60
第4章 结合方法 61
4.1 结合带来的益处 61
4.2 均值法 62
4.2.1 简单平均法 62
4.2.2 加权平均法 63
4.3 投票法 65
4.3.1 绝对多数投票法 65
4.3.2 相对多数投票法 66
4.3.3 加权投票法 67
4.3.4 软投票法 68
4.3.5 理论探讨 70
4.4 学习结合法 76
4.4.1 Stacking 76
4.4.2 无限集成 78
4.5 其他结合方法 79
4.5.1 代数法 80
4.5.2 行为知识空间法 81
4.5.3 决策模板法 81
4.6 相关方法 82
4.6.1 纠错输出编码法 82
4.6.2 动态分类器选择法 85
4.6.3 混合专家模型 86
4.7 拓展阅读 87
第5章 多样性 91
5.1 集成多样性 91
5.2 误差分解 92
5.2.1 误差-分歧分解 92
5.2.2 偏差-方差-协方差分解 94
5.3 多样性度量 96
5.3.1 成对度量 96
5.3.2 非成对度量 97
5.3.3 小结和可视化 100
5.3.4 多样性度量的局限 101
5.4 信息论多样性 102
5.4.1 信息论和集成 102
5.4.2 交互信息多样性 103
5.4.3 多信息多样性 104
5.4.4 估计方法 105
5.5 多样性增强 106
5.6 拓展阅读 108
第6章 集成修剪 109
6.1 何谓集成修剪 109
6.2 多比全好 110
6.3 修剪方法分类 113
6.4 基于排序的修剪 114
6.5 基于聚类的修剪 117
6.6 基于优化的修剪 117
6.6.1 启发式优化修剪 118
6.6.2 数学规划修剪 118
6.6.3 概率修剪 121
6.7 拓展阅读 122
第7章 聚类集成 125
7.1 聚类 125
7.1.1 聚类方法 125
7.1.2 聚类评估 127
7.1.3 为什么要做聚类集成 129
7.2 聚类集成方法分类 130
7.3 基于相似度的方法 132
7.4 基于图的方法 133
7.5 基于重标记的方法 136
7.6 基于变换的方法 140
7.7 拓展阅读 143
第8章 进阶议题 145
8.1 半监督学习 145
8.1.1 未标记数据的效用 145
8.1.2 半监督学习的集成学习方法 146
8.2 主动学习 151
8.2.1 人为介入的效用 151
8.2.2 基于集成的主动学习 152
8.3 代价敏感学习 153
8.3.1 不均等代价下的学习 153
8.3.2 代价敏感学习的集成方法 154
8.4 类别不平衡学习 158
8.4.1 类别不平衡 158
8.4.2 类别不平衡学习的性能评估 160
8.4.3 类别不平衡学习的集成方法 163
8.5 提升可解释性 166
8.5.1 集成约简 166
8.5.2 规则抽取 167
8.5.3 可视化 168
8.6 未来的研究方向 169
8.7 拓展阅读 171
参考文献 173
索引 203