注重体验与质量的电子书资源下载网站
分类于: 互联网 计算机基础
简介
什么是数学: 对思想和方法的基本研究 豆 9.3分
资源最后更新于 2020-07-22 14:10:25
作者:R•柯朗
译者:左平
出版社:复旦大学出版社
出版日期:2012-01
ISBN:9787309086232
文件格式: pdf
标签: 数学 科普 思维 什么是数学 科学 方法 各科入门 经典
简介· · · · · ·
《什么是数学:对思想和方法的基本研究(第三版)》是世界著名的数学科普读物,它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人士,或是愿意作数学思考者都可以阅读《什么是数学?:对思想和方法的基本研究(第3版)》。特别对中学数学教师、大学生和高中生,都是一本极好的参考书。
目录
《什么是数学:对思想和方法的基本研究(第三版)》
什么是数学
第1章 自然数
引言
1 整数的计算
2 数系的无限性 数学归纳法
第1章补充 数论
引言
1 素数
2 同余
3 毕达哥拉斯数和费马大定理
4 欧几里得辗转相除法
第2章 数学中的数系
引言
1 有理数
2 不可公度线段 无理数和极限概念
3 解析几何概述
4 无限的数学分析
5 复数
6 代数数和超越数
.第2章补充 集合代数
第3章 几何作图 数域的代数
引言
第1部分 不可能性的证明和代数
1 基本几何作图
2 可作图的数和数域
3 三个不可解的希腊问题
第2部分 作图的各种方法
4 几何变换 反演
5 用其他工具作图 只用圆规的马歇罗尼作图
6 再谈反演及其应用
第4章 射影几何 公理体系 非欧几里得几何
1 引言
2 基本概念
3 交比
4 平行性和无穷远
5 应用
6 解析表示
7 只用直尺的作图问题
8 二次曲线和二次曲面
9 公理体系和非欧几何
附录
高维空间中的几何学
第5章 拓扑学
引言
1 多面体的欧拉公式
2 图形的拓扑性质
3 拓扑定理的其他例子
4 曲面的拓扑分类
附录
第6章 函数和极限
引言
1 变量和函数
2 极限
3 连续趋近的极限
4 连续性的精确定义
5 有关连续函数的两个基本定理
6 布尔查诺定理的一些应用
第6章补充 极限和连续的一些例题
1 极限的例题
2 连续性的例题
第7章 极大与极小
引言
1 初等几何中的问题
2 基本极值问题的一般原则
3 驻点与微分学
4 施瓦茨的三角形问题
5 施泰纳问题
6 极值与不等式
7 极值的存在性 狄里赫莱原理
8 等周问题
9 带有边界条件的极值问题 施泰纳问题和等周问题之间的联系
10 变分法
11 极小问题的实验解法 肥皂膜实验
第8章 微积分
引言
1 积分
2 导数
3 微分法
4 莱布尼茨的记号和“无穷小”
5 微积分基本定理
6 指数函数与对数函数
7 微分方程
第8章补充
1 原理方面的内容
2 数量级
3 无穷级数和无穷乘积
4 用统计方法得到素数定理
第9章 最新进展
1 产生素数的公式
2 哥德巴赫猜想和孪生素数
3 费马大定理
4 连续统假设
5 集合论中的符号
6 四色定理
7 豪斯道夫维数和分形
8 纽结
9 力学中的一个问题
10 施泰纳问题
11 肥皂膜和最小曲面
12 非标准分析
附录 补充说明 问题和习题
算术和代数
解析几何
几何作图
射影几何和非欧几何
拓扑学
函数、极限和连续性
极大与极小
微积分
积分法
参考书目1
参考书目2(推荐阅读)
跋
什么是数学
第1章 自然数
引言
1 整数的计算
2 数系的无限性 数学归纳法
第1章补充 数论
引言
1 素数
2 同余
3 毕达哥拉斯数和费马大定理
4 欧几里得辗转相除法
第2章 数学中的数系
引言
1 有理数
2 不可公度线段 无理数和极限概念
3 解析几何概述
4 无限的数学分析
5 复数
6 代数数和超越数
.第2章补充 集合代数
第3章 几何作图 数域的代数
引言
第1部分 不可能性的证明和代数
1 基本几何作图
2 可作图的数和数域
3 三个不可解的希腊问题
第2部分 作图的各种方法
4 几何变换 反演
5 用其他工具作图 只用圆规的马歇罗尼作图
6 再谈反演及其应用
第4章 射影几何 公理体系 非欧几里得几何
1 引言
2 基本概念
3 交比
4 平行性和无穷远
5 应用
6 解析表示
7 只用直尺的作图问题
8 二次曲线和二次曲面
9 公理体系和非欧几何
附录
高维空间中的几何学
第5章 拓扑学
引言
1 多面体的欧拉公式
2 图形的拓扑性质
3 拓扑定理的其他例子
4 曲面的拓扑分类
附录
第6章 函数和极限
引言
1 变量和函数
2 极限
3 连续趋近的极限
4 连续性的精确定义
5 有关连续函数的两个基本定理
6 布尔查诺定理的一些应用
第6章补充 极限和连续的一些例题
1 极限的例题
2 连续性的例题
第7章 极大与极小
引言
1 初等几何中的问题
2 基本极值问题的一般原则
3 驻点与微分学
4 施瓦茨的三角形问题
5 施泰纳问题
6 极值与不等式
7 极值的存在性 狄里赫莱原理
8 等周问题
9 带有边界条件的极值问题 施泰纳问题和等周问题之间的联系
10 变分法
11 极小问题的实验解法 肥皂膜实验
第8章 微积分
引言
1 积分
2 导数
3 微分法
4 莱布尼茨的记号和“无穷小”
5 微积分基本定理
6 指数函数与对数函数
7 微分方程
第8章补充
1 原理方面的内容
2 数量级
3 无穷级数和无穷乘积
4 用统计方法得到素数定理
第9章 最新进展
1 产生素数的公式
2 哥德巴赫猜想和孪生素数
3 费马大定理
4 连续统假设
5 集合论中的符号
6 四色定理
7 豪斯道夫维数和分形
8 纽结
9 力学中的一个问题
10 施泰纳问题
11 肥皂膜和最小曲面
12 非标准分析
附录 补充说明 问题和习题
算术和代数
解析几何
几何作图
射影几何和非欧几何
拓扑学
函数、极限和连续性
极大与极小
微积分
积分法
参考书目1
参考书目2(推荐阅读)
跋