logo
分类于: 设计 计算机基础

简介

Python for Data Analysis: Python大数据分析基础教程

Python for Data Analysis: Python大数据分析基础教程 7.8分

资源最后更新于 2020-10-05 18:43:37

作者:Wesly McKinney

出版社:O'Reilly Media

出版日期:2013-01

ISBN:9781549329784

文件格式: pdf

标签: Python 数据分析 python大数据分析 Python基础教程 计算机 编程 python python培训

简介· · · · · ·

这本书主要是用 pandas 连接 SciPy 和 NumPy,用pandas做数据处理是Pycon2012上一个很热门的话题。另一个功能强大的东西是Sage,它将很多开源的软件集成到统一的 Python 接口。

Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about ...

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

Chapter 1 Preliminaries
What Is This Book About?
Why Python for Data Analysis?
Essential Python Libraries
Installation and Setup
Community and Conferences
Navigating This Book
Acknowledgements
Chapter 2 Introductory Examples
1.usa.gov data from bit.ly
MovieLens 1M Data Set
US Baby Names 1880-2010
Conclusions and The Path Ahead
Chapter 3 IPython: An Interactive Computing and Development Environment
IPython Basics
Using the Command History
Interacting with the Operating System
Software Development Tools
IPython HTML Notebook
Tips for Productive Code Development Using IPython
Advanced IPython Features
Credits
Chapter 4 NumPy Basics: Arrays and Vectorized Computation
The NumPy ndarray: A Multidimensional Array Object
Universal Functions: Fast Element-wise Array Functions
Data Processing Using Arrays
File Input and Output with Arrays
Linear Algebra
Random Number Generation
Example: Random Walks
Chapter 5 Getting Started with pandas
Introduction to pandas Data Structures
Essential Functionality
Summarizing and Computing Descriptive Statistics
Handling Missing Data
Hierarchical Indexing
Other pandas Topics
Chapter 6 Data Loading, Storage, and File Formats
Reading and Writing Data in Text Format
Binary Data Formats
Interacting with HTML and Web APIs
Interacting with Databases
Chapter 7 Data Wrangling: Clean, Transform, Merge, Reshape
Combining and Merging Data Sets
Reshaping and Pivoting
Data Transformation
String Manipulation
Example: USDA Food Database
Chapter 8 Plotting and Visualization
A Brief matplotlib API Primer
Plotting Functions in pandas
Plotting Maps: Visualizing Haiti Earthquake Crisis Data
Python Visualization Tool Ecosystem
Chapter 9 Data Aggregation and Group Operations
GroupBy Mechanics
Data Aggregation
Group-wise Operations and Transformations
Pivot Tables and Cross-Tabulation
Example: 2012 Federal Election Commission Database
Chapter 10 Time Series
Date and Time Data Types and Tools
Time Series Basics
Date Ranges, Frequencies, and Shifting
Time Zone Handling
Periods and Period Arithmetic
Resampling and Frequency Conversion
Time Series Plotting
Moving Window Functions
Performance and Memory Usage Notes
Chapter 11 Financial and Economic Data Applications
Data Munging Topics
Group Transforms and Analysis
More Example Applications
Chapter 12 Advanced NumPy
ndarray Object Internals
Advanced Array Manipulation
Broadcasting
Advanced ufunc Usage
Structured and Record Arrays
More About Sorting
NumPy Matrix Class
Advanced Array Input and Output
Performance Tips
Appendix Python Language Essentials
The Python Interpreter
The Basics
Data Structures and Sequences
Functions
Files and the operating system