logo
分类于: 设计 计算机基础

简介

实数学分析(影印版)

实数学分析(影印版) 9.2分

资源最后更新于 2020-10-05 18:48:30

作者:Charles Chapman Pugh

出版社:高等教育出版社

出版日期:2009-01

ISBN:9787040255348

文件格式: pdf

标签: 数学 数学分析 实分析 分析 高等微积分 天元数学 伯克利加州大学 Analysis

简介· · · · · ·

本书是作者Pugh在伯克利大学讲授数学分析课程30多年之久的基础上编写而成,书中语言表述生动活泼、通俗易懂,引用了很多有价值的例子以及来自 Dieudonne,Littlewood和Osserman等几位数学家的评论,还精心挑选了500多个精彩的练习题。本书内容包括实数、拓扑知识初步、实变函数、函数空间、多元微积分、Lebesgue积分理论等,其中多元微积分的讲法较为接近当前数学界常用的语言,将会对我国数学分析的教学产生积极的影响。...

直接下载

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

《实数学分析(影印本)》目录:
1 Real Numbers
1 Preliminaries
2 Cuts
3 Euclidean Space
4 Cardinality
5* Comparing Cardinalities
6* The Skeleton of Calculus
Exercises
2 A Taste of Topology
1 Metric Space Concepts
2 Compactness
3 Connectedness
4 Coverings
5 Cantor Sets
6* Cantor Set Lore
7* Completion
Exercises
3 Functions of a Real Variable
1 Differentiation
2 Riemann Integration
3 Series
Exercises
4 Function Spaces
1 Uniform Convergence and C0[a, b]
2 Power Series
3 Compactness and Equicontinuity in CO
4 Uniform Approximation in Co
5 Contractions and ODE's
6* Analytic Functions
7* Nowhere Differentiable Continuous Functions
8* Spaces of Unbounded Functions
Exercises
5 Multivariable Calculus
1 Linear Algebra
2 Derivatives
3 Higher derivatives
4 Smoothness Classes
5 Implicit and Inverse Functions
6* The Rank Theorem
7* Lagrange Multipliers
8 Multiple Integrals
9 Differential Forms
10 The General Stokes' Formula
11* The Brouwer Fixed Point Theorem
Appendix A: Perorations of Dieudonne
Appendix B: The History of Cavalieri's Principle
Appendix C: A Short Excursion into
the Complex Field
Appendix D: Polar Form
Appendix E: Determinants
Exercises
6 Lebesgue Theory
1 Outer measure
2 Measurability
3 Regularity
4 Lebesgue integrals
5 Lebesgue integrals as limits
6 Italian Measure Theory
7 Vitali coverings and density points
8 Lebesgue's Fundamental Theorem of Calculus
9 Lebesgue's Last Theorem
Appendix A: Translations and Nonmeasurable sets
Appendix B: The Banach-Tarski Paradox
Appendix C: Riemann integrals as undergraphs
Appendix D: Littlewood's Three Principles
Appendix E: Roundness
Appendix F: Money
Suggested Reading
Bibliography
Exercises
Index