logo
分类于: 其它 人工智能

简介

代数拓扑导论

代数拓扑导论 9.1分

资源最后更新于 2020-11-16 04:11:37

作者:罗曼

出版社:世界图书出版公司

出版日期:2009-01

ISBN:9787506282802

文件格式: pdf

标签: 代数拓扑 数学 GTM 拓扑 代数拓扑学 Mathematics 代数拓扑7 J.Rotman

简介· · · · · ·

《代数拓扑导论(英文版)》介绍了:There is a canard that every textbook of algebraic topology either ends with the definition of the Klein bottle or is a personal communication to .I.H.C. Whitehead. Of course, this is false, as a giance at the books of Hilton and Wylie, Maunder, Munkres, and Schubert reveals. Still, the canard does reflect some truth. Too often one finds too much generality and...

直接下载

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

PrefaceTo the ReaderCHAPTER 0 Introduction Notation Brouwer Fixed Point Theorem Categories and FunctorsCHAPTER 1 Some Basic Topological Notions Homotopy Convexity, Contractibility, and Cones Paths and Path ConnectednessCHAPTER 2 Simplexes Affine Spaces Aftine MapsCHAPTER 3 The Fundamental Group The Fundamental Groupoid The Functor π π1(S1)CHAPTER 4 Singular Homology Holes and Green's Theorem Free Abelian Groups The Singular Complex and Homology Functors Dimension Axiom and Compact Supports The Homotopy Axiom The Hurewicz TheoremCHAPTER 5 Long Exact Sequences The Category Comp Exact Homology Sequences Reduced HomologyCHAPTER 6 Excision and Applications Excision and Mayer-Vietoris Homology of Spheres and Some Applications Barycentric Subdivision and the Proof of Excision Moxe Applications to Euclidean SpaceCHAPTER 7 Simplicial Complexes Definitions Simplicial Approximation Abstract Simplicial Complexes Simplicial Homology Comparison with Singular Homology Calculations Fundamental Groups of Polyhedra The Seifert-van Kampen TheoremCHAPTER 8 CW Complexes Hausdorff Quotient Spaces Attaching Calls Homology and Attaching Cells CW Complexes Cellular HomologyCHAPTER 9 Natural Transformations Definitions and Examples Eilenberg-Steenrod Axioms Chain Equivalences Acyclic Models Lefschetz Fixed Point Theorem Tensor Products Universal Coefficients Eilenberg-Zilber Theorem and the Kiinneth FormulaCHAPTER 10 Covering Spaces Basic Properties Covering Transformations Existence Orbit SpacesCHAPTER 11 Homotopy Groups Function Spaces Group Objects and Cogroup Objects Loop Space and Suspension Homotopy Groups Exact Sequences Fibrations A Glimpse AheadCHAPTER 12 Cohomology Differential Forms Cohomoiogy Groups Universal Coefficients Theorems for Cohomology Cohomology Rings Computations and ApplicationsBibliographyNotationIndex