logo
分类于: 云计算&大数据 其它

简介

Causality: Models, Reasoning and Inference

Causality: Models, Reasoning and Inference 9.2分

资源最后更新于 2020-09-05 22:00:52

作者:Judea Pearl

出版社:Cambridge University Press

出版日期:2009-01

ISBN:9780521895606

文件格式: pdf

标签: Causality 统计 人工智能 数学 方法论 统计学 Statistics 因果推断

简介· · · · · ·

Written by one of the preeminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, economics, philosophy, cognitive science, and the health and social scienc...

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

1. Introduction to probabilities, graphs, and causal models;
2. A theory of inferred causation;
3. Causal diagrams and the identification of causal effects;
4. Actions, plans, and direct effects;
5. Causality and structural models in social science and economics;
6. Simpson's paradox, confounding, and collapsibility;
7. The logic of structure-based counterfactuals;
8. Imperfect experiments: bounding effects and counterfactuals;
9. Probability of causation: interpretation and identification;
10. The actual cause.