logo
分类于: 互联网 其它

简介

Automated Machine Learning: Methods, Systems, Challenges

Automated Machine Learning: Methods, Systems, Challenges 0.0分

资源最后更新于 2020-09-27 15:06:38

作者:Frank Hutter

出版社:Springer

出版日期:2019-01

ISBN:9783030053178

文件格式: pdf

标签: 机器学习 automl 数学和计算机 人工智能 专业

简介· · · · · ·

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for ...

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

Part I AutoML Methods
1 Hyperparameter Optimization............................................ 3
Matthias Feurer and Frank Hutter
2 Meta-Learning .............................................................. 35 Joaquin Vanschoren
3 Neural Architecture Search ............................................... 63 Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter
Part II AutoML Systems
4 Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA .................................................... 81 Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter,
and Kevin Leyton-Brown
5 Hyperopt-Sklearn........................................................... 97 Brent Komer, James Bergstra, and Chris Eliasmith
6 Auto-sklearn: Efficient and Robust Automated Machine
Learning ..................................................................... 113 Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Tobias Springenberg, Manuel Blum, and Frank Hutter
7 Towards Automatically-Tuned Deep Neural Networks................. 135 Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias
Springenberg, Matthias Urban, Michael Burkart, Maximilian Dippel,
Marius Lindauer, and Frank Hutter
8 TPOT: A Tree-Based Pipeline Optimization Tool
for Automating Machine Learning ....................................... 151 Randal S. Olson and Jason H. Moore
xiii
xiv Contents
9 The Automatic Statistician ................................................ 161 Christian Steinruecken, Emma Smith, David Janz, James Lloyd,
and Zoubin Ghahramani
Part III AutoML Challenges
10 Analysis of the AutoML Challenge Series 2015–2018 .................. 177 Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé,
Hugo Jair Escalante, Sergio Escalera, Zhengying Liu, Damir Jajetic,
Bisakha Ray, Mehreen Saeed, Michèle Sebag, Alexander Statnikov,
Wei-Wei Tu, and Evelyne Viegas