logo
分类于: 其它 云计算&大数据

简介

Feature Engineering for Machine Learning Models

Feature Engineering for Machine Learning Models 6.5分

资源最后更新于 2020-09-27 15:06:40

作者:Alice Zheng

出版社:O′Reilly

出版日期:2017-01

ISBN:9781491953242

文件格式: pdf

标签: 机器学习 特征工程 数据科学 ML 数据分析 计算机 数据挖掘 大数据

简介· · · · · ·

特征工程对于应用机器学习来说是基础的,但是使用域知识来加强你的预测模型既困难成本又高。为了弥补特征工程现有资料的不足,本书将会为初中级数据科学家讲解如何处理这项广泛应用却鲜见讨论的技术。

作者Alic Zheng会讲解常用的练习和数学原理,以帮助工程师分析新数据和任务的特征。如果你理解基本的机器学习概念,如有监督学习和无监督学习,那么你已经准备好学习本书了。你不仅会学习到如何以一种系统化和原理化的方式部署特征工程,并且还会学习如何更好地实践数据科学。

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

Chapter 1 Introduction
Chapter 2 Fancy Tricks with Simple Numbers
Chapter 3 Basic Feature Engineering for Text Data: Flatten and Filter
Chapter 4 The Effects of Feature Scaling: From Bag-of-Words to Tf-Idf
Chapter 5 Counts and Categorical Variables: Counting Eggs in the Age of Robotic Chickens
Chapter 6 Dimensionality Reduction: Squashing the Data Pancake with PCA
Chapter 7 Non-Linear Featurization and Model Stacking
Chapter 8 Automating the Featurizer: Image Feature Extraction and Deep Learning
Appendix A Linear Modeling and Linear Algebra Basics