注重体验与质量的电子书资源下载网站
分类于: 编程语言 互联网
简介
胸有成竹!数据分析的SPSS和SAS EG进阶(第2版) 豆 0.0分
资源最后更新于 2020-10-05 18:43:39
作者:经管之家
出版社:电子工业出版社
出版日期:2016-01
ISBN:9787121285318
文件格式: pdf
标签: 数据分析
简介· · · · · ·
《胸有成竹!数据分析的SPSS和SAS EG进阶(第2版)》共5 章,涉及使用SPSS Statistics 和SAS EG 做商业数据分析的主要分析方法。其中,第1章的主要内容为数据分析方法概述;第2 章至第4 章的主要内容为横截面数据分析方法;第5 章的主要内容为时间序列分析方法。每章都根据所涉及的知识点的不同,选取了实用的案例,并为读者准备了相应的思考和练习题。
《胸有成竹!数据分析的SPSS和SAS EG进阶(第2版)》是一本面向商业数据分析初学者的教材,从具体的商业数据分析案例入手,使读者掌握数据分析的目的、理念、思路与分析步骤。本书力图淡化技术,对于方法的介绍也尽量避免涉及过多的数学内容,和高等数学相关的内容只在线形回归和主成分分析这两节中涉及到,而且都辅以图形作形象的展现。因此本书的读者只需要具有高中水平的数学基础即可。
目录
第1 章数据分析方法概述 1
1.1 数据分析概述.. 2
1.1.1 数据分析过程 2
1.1.2 数据分析的商业驱动 3
1.2 数据分析与挖掘方法分类介绍. 5
1.2.1 描述性——无监督的学习. 7
1.2.2 预测性——有监督的学习.. 10
1.3 数据分析的方法论. 12
1.3.1 数据挖掘的项目管理方法论:CRISP-DM 13
1.3.2 数据整理与建模的方法论:SEMMA .. 14
1.3.3 SAS EG 和SPSS 任务菜单编排与SEMMA 之间的关系. 16
第2 章描述数据特征.. 19
2.1 认识数据类型 20
2.2 单变量描述统计方法 21
2.2.1 分类变量的描述 21
2.2.2 连续变量的描述 22
2.3 创建频数报表 35
2.4 生成汇总统计量.. 38
2.5 用汇总表任务生成汇总报表 41
2.6 绘制条形图. 46
2.7 绘制地图.. 53
2.8 使用SPSS 进行描述统计.. 55
2.8.1 频率过程.. 56
2.8.2 描述过程.. 57
2.8.3 探索过程.. 58
2.8.4 P-P 图与Q-Q 图 58
2.9 使用SPSS 绘制统计图形.. 60
2.9.1 作图方法.. 60
2.9.2 饼图、柱图与条图.. 64
2.9.3 线图、高低图和双轴图 70
2.9.4 散点图 73
第3 章描述性数据分析/挖掘方法. 75
3.1 客户细分方法介绍. 76
3.1.1 客户细分的意义 76
3.1.2 根据客户利润贡献进行划分. 77
3.1.3 根据个人或公司的生命历程进行划分 78
3.1.4 根据客户的产品偏好进行划分 79
3.1.5 根据客户交易/消费行为进行划分. 80
3.1.6 根据客户的多维行为属性细分 81
3.1.7 展现客户/产品结构的战略细分.. 81
3.1.8 客户细分:综合运用. 82
3.2 连续变量间关系探索与变量约减. 82
3.2.1 多元统计基础. 82
3.2.2 多元变量压缩的思路. 87
3.2.3 主成分分析.. 89
3.2.4 因子分析. 103
3.2.5 对应分析. 112
3.2.6 最优尺度分析.. 119
3.2.7 多维尺度分析.. 124
3.3 聚类分析 133
3.3.1 基本逻辑. 134
3.3.2 系统聚类. 135
3.3.3 快速聚类. 146
3.3.4 两步聚类. 155
第4 章预测性数据分析方法.. 161
4.1 假设检验概念. 162
4.1.1 统计推断基本概念 164
4.1.2 变量分布的图形探索.. 165
4.1.3 均值的置信区间. 167
4.1.4 假设检验基础.. 168
4.1.5 T 检验. 169
4.2 构造对连续变量的预测模型. 174
4.2.1 方差分析(ANOVA) 174
4.2.2 线性回归. 190
4.2.3 线性回归的模型诊断.. 203
4.2.4 线性回归的全流程 211
4.3 构造对二分类变量的预测模型 217
4.3.1 分类变量之间的相关性检验.. 217
4.3.2 逻辑回归. 224
第5 章时间序列.. 240
5.1 时间序列的趋势分解法 241
5.1.1 趋势分解法简介. 241
5.2.2 使用SAS EG 进行时间序列趋势分解.. 242
5.2.3 使用SPSS 进行时间序列趋势分解 244
5.2 平稳时间序列(ARMA)模型设定与识别. 245
5.2.1 平稳时间序列定义 245
5.2.2 平稳时间序列模型建模. 246
5.2.3 ARMA 的模型设定与识别.. 247
5.3 非平稳时间序列(ARIMA)模型设定与识别.. 250
5.4 SAS EG 时间序列建模步骤.. 252
5.5 SPSS 时间序列建模步骤. 258
5.5.1 SPSS 构造ARIMA 模型使用的任务菜单.. 258
5.5.2 “定义日期”任务.. 260
5.5.3 “序列图”任务 261
5.5.4 “自相关”任务 262
5.5.5 “创建模型”任务.. 263
5.5.6 “使用模型”任务.. 267
5.5.7 其他内容. 267
附录A 数据说明.. 271
附录B CDA 数据分析师致力于最好的数据分析人才建设.. 278
参考文献 282
1.1 数据分析概述.. 2
1.1.1 数据分析过程 2
1.1.2 数据分析的商业驱动 3
1.2 数据分析与挖掘方法分类介绍. 5
1.2.1 描述性——无监督的学习. 7
1.2.2 预测性——有监督的学习.. 10
1.3 数据分析的方法论. 12
1.3.1 数据挖掘的项目管理方法论:CRISP-DM 13
1.3.2 数据整理与建模的方法论:SEMMA .. 14
1.3.3 SAS EG 和SPSS 任务菜单编排与SEMMA 之间的关系. 16
第2 章描述数据特征.. 19
2.1 认识数据类型 20
2.2 单变量描述统计方法 21
2.2.1 分类变量的描述 21
2.2.2 连续变量的描述 22
2.3 创建频数报表 35
2.4 生成汇总统计量.. 38
2.5 用汇总表任务生成汇总报表 41
2.6 绘制条形图. 46
2.7 绘制地图.. 53
2.8 使用SPSS 进行描述统计.. 55
2.8.1 频率过程.. 56
2.8.2 描述过程.. 57
2.8.3 探索过程.. 58
2.8.4 P-P 图与Q-Q 图 58
2.9 使用SPSS 绘制统计图形.. 60
2.9.1 作图方法.. 60
2.9.2 饼图、柱图与条图.. 64
2.9.3 线图、高低图和双轴图 70
2.9.4 散点图 73
第3 章描述性数据分析/挖掘方法. 75
3.1 客户细分方法介绍. 76
3.1.1 客户细分的意义 76
3.1.2 根据客户利润贡献进行划分. 77
3.1.3 根据个人或公司的生命历程进行划分 78
3.1.4 根据客户的产品偏好进行划分 79
3.1.5 根据客户交易/消费行为进行划分. 80
3.1.6 根据客户的多维行为属性细分 81
3.1.7 展现客户/产品结构的战略细分.. 81
3.1.8 客户细分:综合运用. 82
3.2 连续变量间关系探索与变量约减. 82
3.2.1 多元统计基础. 82
3.2.2 多元变量压缩的思路. 87
3.2.3 主成分分析.. 89
3.2.4 因子分析. 103
3.2.5 对应分析. 112
3.2.6 最优尺度分析.. 119
3.2.7 多维尺度分析.. 124
3.3 聚类分析 133
3.3.1 基本逻辑. 134
3.3.2 系统聚类. 135
3.3.3 快速聚类. 146
3.3.4 两步聚类. 155
第4 章预测性数据分析方法.. 161
4.1 假设检验概念. 162
4.1.1 统计推断基本概念 164
4.1.2 变量分布的图形探索.. 165
4.1.3 均值的置信区间. 167
4.1.4 假设检验基础.. 168
4.1.5 T 检验. 169
4.2 构造对连续变量的预测模型. 174
4.2.1 方差分析(ANOVA) 174
4.2.2 线性回归. 190
4.2.3 线性回归的模型诊断.. 203
4.2.4 线性回归的全流程 211
4.3 构造对二分类变量的预测模型 217
4.3.1 分类变量之间的相关性检验.. 217
4.3.2 逻辑回归. 224
第5 章时间序列.. 240
5.1 时间序列的趋势分解法 241
5.1.1 趋势分解法简介. 241
5.2.2 使用SAS EG 进行时间序列趋势分解.. 242
5.2.3 使用SPSS 进行时间序列趋势分解 244
5.2 平稳时间序列(ARMA)模型设定与识别. 245
5.2.1 平稳时间序列定义 245
5.2.2 平稳时间序列模型建模. 246
5.2.3 ARMA 的模型设定与识别.. 247
5.3 非平稳时间序列(ARIMA)模型设定与识别.. 250
5.4 SAS EG 时间序列建模步骤.. 252
5.5 SPSS 时间序列建模步骤. 258
5.5.1 SPSS 构造ARIMA 模型使用的任务菜单.. 258
5.5.2 “定义日期”任务.. 260
5.5.3 “序列图”任务 261
5.5.4 “自相关”任务 262
5.5.5 “创建模型”任务.. 263
5.5.6 “使用模型”任务.. 267
5.5.7 其他内容. 267
附录A 数据说明.. 271
附录B CDA 数据分析师致力于最好的数据分析人才建设.. 278
参考文献 282