注重体验与质量的电子书资源下载网站
分类于: 其它 互联网
简介
网络数据的统计分析:R语言实践 豆 8.7分
资源最后更新于 2020-11-20 04:37:26
作者:[美]埃里克•D•克拉泽克
译者:李杨
出版社:西安交通大学出版社
出版日期:2016-01
ISBN:9787560584782
文件格式: pdf
标签: R R语言 统计模型 社会网络 网络科学 数据分析 社交网络分析 研究方法
简介· · · · · ·
译者序
我们正身处一个网络时代。全球的生产贸易网络深刻改变了我们的物质生活,互联网的普及则让我们身处信息洪流之中。当网络成为我们生活的一部分,我们也成为了网络的一部分。面对相互关联的海量网络数据,置身其中的我们如何认识这个世界?
在这样的背景下,网络科学近年来迅速崛起,横跨数学、物理学、生物学、计算机、社会学、传播学等领域,成了定量研究中的“显学”。通过将复杂系统抽象为节点、边以及它们的属性,网络科学为解析系统特征、建立系统模型和研究系统的动态过程提供了一套简洁优美的方法。研究者掌握了网络科学的思考方式和分析工具之后,通常可以站在一个更为全局的视角审视问题,让多个交叉学科的研究进展为我所用。尽管市场上已经有不少优秀的网络科学著作,我们相信本书仍会给读者带来惊喜。由于网络科学研究者的学科背景不同,多数网络科学著作往往带有强烈的学科视角特色,例如统计物理...
目录
译者序
作者简介
第1章 引言
1.1 为什么研究网络?
1.2 网络分析的类型
1.2.1 网络可视化与特征化
1.2.2 网络建模与推断
1.2.3 网络过程
1.3 为什么使用R 进行网络分析?
1.4 关于本书
1.5 关于本书的R 语言代码
第2章 操作网络数据
2.1 概述
2.2 创建网络图
2.2.1 无向图和有向图
2.2.2 图的表示
2.2.3 图的操作
2.3 网络图的修饰
2.3.1 节点、边和图的属性
2.3.2 使用数据框
2.4 关于图
2.4.1 图的基本概念
2.4.2 特殊类型的图
2.5 参考读物
第3章 网络数据可视化
3.1 概述
3.2 图可视化的基本元素
3.3 图的布局
3.4 修饰图的布局
3.5 大型网络可视化
3.6 使用R之外的可视化工具
3.7 参考读物
第4章 网络图特征的描述性分析
4.1 概述
4.2 节点和边的特征
4.2.1 节点度
4.2.2 节点中心性
4.2.3 边的特征
4.3 网络的凝聚性特征
4.3.1 子图与普查
4.3.2 密度与相对频率
4.3.3 连通性、割与流
4.4 图分割
4.4.1 层次聚类
4.4.2 谱分割
4.4.3 图分割的验证
4.5 同配性与混合
4.6 参考读物
第5章 网络图的数学模型
5.1 概述
5.2 经典随机图模型
5.3 广义随机图模型
5.4 基于机制的网络图模型
5.4.1 小世界模型
5.4.2 优先连接模型
5.5 评估网络图特征的显著性
5.5.1 评估网络社团数量
5.5.2 评估小世界性
5.6 参考读物
第6章 网络图的统计模型
6.1 概述
6.2 指数随机图模型
6.2.1 一般形式
6.2.2 模型界定
6.2.3 模型拟合
6.2.4 拟合优度
6.3 网络块模型
6.3.1 模型界定
6.3.2 模型拟合
6.3.3 拟合优度
6.4 潜变量网络模型
6.4.1 一般形式
6.4.2 界定潜变量效应
6.4.3 模型拟合
6.4.4 拟合优度
6.5 参考读物
第7章 网络拓扑结构推断
7.1 概述
7.2 链路预测
7.3 关联网络推断
7.3.1 相关网络
7.3.2 偏相关网络
7.3.3 高斯图模型网络
7.4 网络的层析拓扑结构推断
7.4.1 约束问题:树拓扑结构
7.4.2 树拓扑结构的层析推断示例
7.5 参考读物
第8章 网络图上的过程建模与预测
8.1 概述
8.2 最近邻方法
8.3 马尔科夫随机场
8.3.1 一般形式
8.3.2 自逻辑模型
8.3.3 自逻辑模型的推断与预测
8.3.4 拟合优度
8.4 核方法
8.4.1 设计图上的核函数
8.4.2 图上的核回归
8.5 动态过程的建模与预测
8.5.1 传染病过程示例
8.6 参考读物
第9章 网络流数据分析
9.1 概述
9.2 网络流建模:引力模型
9.2.1 模型界定
9.2.2 引力模型的推断
9.3 网络流的预测:流量矩阵估计
9.3.1 不适定逆问题
9.3.2 层析引力方法
9.4 参考读物
第10章 动态网络
10.1 概述
10.2 动态网络的表示与操作
10.3 动态网络的可视化
10.4 动态网络的特征化
10.5 动态网络建模
参考文献
索引
彩图节选
作者简介
第1章 引言
1.1 为什么研究网络?
1.2 网络分析的类型
1.2.1 网络可视化与特征化
1.2.2 网络建模与推断
1.2.3 网络过程
1.3 为什么使用R 进行网络分析?
1.4 关于本书
1.5 关于本书的R 语言代码
第2章 操作网络数据
2.1 概述
2.2 创建网络图
2.2.1 无向图和有向图
2.2.2 图的表示
2.2.3 图的操作
2.3 网络图的修饰
2.3.1 节点、边和图的属性
2.3.2 使用数据框
2.4 关于图
2.4.1 图的基本概念
2.4.2 特殊类型的图
2.5 参考读物
第3章 网络数据可视化
3.1 概述
3.2 图可视化的基本元素
3.3 图的布局
3.4 修饰图的布局
3.5 大型网络可视化
3.6 使用R之外的可视化工具
3.7 参考读物
第4章 网络图特征的描述性分析
4.1 概述
4.2 节点和边的特征
4.2.1 节点度
4.2.2 节点中心性
4.2.3 边的特征
4.3 网络的凝聚性特征
4.3.1 子图与普查
4.3.2 密度与相对频率
4.3.3 连通性、割与流
4.4 图分割
4.4.1 层次聚类
4.4.2 谱分割
4.4.3 图分割的验证
4.5 同配性与混合
4.6 参考读物
第5章 网络图的数学模型
5.1 概述
5.2 经典随机图模型
5.3 广义随机图模型
5.4 基于机制的网络图模型
5.4.1 小世界模型
5.4.2 优先连接模型
5.5 评估网络图特征的显著性
5.5.1 评估网络社团数量
5.5.2 评估小世界性
5.6 参考读物
第6章 网络图的统计模型
6.1 概述
6.2 指数随机图模型
6.2.1 一般形式
6.2.2 模型界定
6.2.3 模型拟合
6.2.4 拟合优度
6.3 网络块模型
6.3.1 模型界定
6.3.2 模型拟合
6.3.3 拟合优度
6.4 潜变量网络模型
6.4.1 一般形式
6.4.2 界定潜变量效应
6.4.3 模型拟合
6.4.4 拟合优度
6.5 参考读物
第7章 网络拓扑结构推断
7.1 概述
7.2 链路预测
7.3 关联网络推断
7.3.1 相关网络
7.3.2 偏相关网络
7.3.3 高斯图模型网络
7.4 网络的层析拓扑结构推断
7.4.1 约束问题:树拓扑结构
7.4.2 树拓扑结构的层析推断示例
7.5 参考读物
第8章 网络图上的过程建模与预测
8.1 概述
8.2 最近邻方法
8.3 马尔科夫随机场
8.3.1 一般形式
8.3.2 自逻辑模型
8.3.3 自逻辑模型的推断与预测
8.3.4 拟合优度
8.4 核方法
8.4.1 设计图上的核函数
8.4.2 图上的核回归
8.5 动态过程的建模与预测
8.5.1 传染病过程示例
8.6 参考读物
第9章 网络流数据分析
9.1 概述
9.2 网络流建模:引力模型
9.2.1 模型界定
9.2.2 引力模型的推断
9.3 网络流的预测:流量矩阵估计
9.3.1 不适定逆问题
9.3.2 层析引力方法
9.4 参考读物
第10章 动态网络
10.1 概述
10.2 动态网络的表示与操作
10.3 动态网络的可视化
10.4 动态网络的特征化
10.5 动态网络建模
参考文献
索引
彩图节选