logo
标签名: 机器学习
深度学习导论
出版日期: 2020-01
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
出版日期: 2019-01
Process Mining: Data Science in Action
出版日期: 2016-01
C++模板元编程实战: 一个深度学习框架的初步实现
出版日期: 2018-01
Building Machine Learning Powered Applications: Going from Idea to Product
出版日期: 0000-01
Foundations of Deep Reinforcement Learning: Theory and Practice in Python
出版日期: 2019-01
First-order and Stochastic Optimization Methods for Machine Learning
出版日期: 2020-01
Machine Learning: A Bayesian and Optimization Perspective, 2nd Edition
出版日期: 2020-01
视觉信息认知计算理论
出版日期: 2010-01
Build a Career in Data Science
出版日期: 2020-01
Algebraic Geometry and Statistical Learning Theory
出版日期: 2009-01
Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction
出版日期: 2010-01
Concentration Inequalities and Model Selection: Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003 (Lecture Notes in Mathematics / Ecole d'Eté Probabilit.Saint-Flour)
出版日期: 2007-01
Learning Theory: An Approximation Theory Viewpoint
出版日期: 2007-01
Computational Learning Theory
出版日期: 1997-01
统计机器学习导论
出版日期: 0000-01
Statistics for High-Dimensional Data: Methods, Theory and Applications
出版日期: 2011-01
Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems
出版日期: 0000-01
复杂数据统计方法: 基于R的应用(第三版)
出版日期: 2015-01
Foundations of Linear and Generalized Linear Models
出版日期: 2015-01
Deep Learning Essentials: Your hands-on guide to the fundamentals of deep learning and neural network modeling
出版日期: 2018-01
贝叶斯统计学 原理、模型及应用
出版日期: 1992-01
bootstrap methods and their application: (Cambridge Series in Statistical and Probabilistic Mathematics , No 1)
出版日期: 1997-01
Foundations of Data Science
出版日期: 2020-01