logo
分类于: 计算机基础 人工智能

简介

贝叶斯方法: 概率编程与贝叶斯推断

贝叶斯方法: 概率编程与贝叶斯推断 8.5分

资源最后更新于 2020-08-20 14:12:26

作者:[加] Cameron Davidson-Pilon

译者:辛愿

出版社:人民邮电出版社

出版日期:2017-01

ISBN:9787115438805

文件格式: pdf

标签: Python 贝叶斯方法 贝叶斯 统计学 机器学习 概率编程与贝叶斯推断 计算机科学 数据挖掘

简介· · · · · ·

贝叶斯推理的方法非常自然和极其强大。然而,大多数图书讨论贝叶斯推理,依赖于非常复杂的数学分析和人工的例子,使没有强大数学背景的人无法接触。不过,现在好了,卡梅伦的这本书从编程、计算的角度来介绍贝叶斯推理,把贝叶斯理论和编程实践结合起来,使大多数程序员都可以入门并掌握。

本书通过强大的Python语言库PyMC,以及相关的Python工具,包括NumPy\SciPy\Matplotlib讲解了概率编程。通过本书介绍的方法,读者只需付出很少的努力,就能掌握有效的贝叶斯分析方法。

直接下载

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

第1章 贝叶斯推断的哲学 1
1.1 引言 1
1.1.1 贝叶斯思维 1
1.1.2 贝叶斯推断在实践中的运用 3
1.1.3 频率派的模型是错误的吗? 4
1.1.4 关于大数据 4
1.2 我们的贝叶斯框架 5
1.2.1 不得不讲的实例:抛硬币 5
1.2.2 实例:图书管理员还是农民 6
1.3 概率分布 8
1.3.1 离散情况 9
1.3.2 连续情况 10
1.3.3 什么是 12
1.4 使用计算机执行贝叶斯推断 12
1.4.1 实例:从短信数据推断行为 12
1.4.2 介绍我们的第一板斧:PyMC 14
1.4.3 说明 18
1.4.4 后验样本到底有什么用? 18
1.5 结论 20
1.6 补充说明 20
1.6.1 从统计学上确定两个l值是否真的不一样 20
1.6.2 扩充至两个转折点 22
1.7 习题 24
1.8 答案 24
第2章 进一步了解PyMC 27
2.1 引言 27
2.1.1 父变量与子变量的关系 27
2.1.2 PyMC变量 28
2.1.3 在模型中加入观测值 31
2.1.4 最后…… 33
2.2 建模方法 33
2.2.1 同样的故事,不同的结局 35
2.2.2 实例:贝叶斯A B测试 38
2.2.3 一个简单的场景 38
2.2.4 A和B一起 41
2.2.5 实例:一种人类谎言的算法 45
2.2.6 二项分布 45
2.2.7 实例:学生作弊 46
2.2.8 另一种PyMC模型 50
2.2.9 更多的PyMC技巧 51
2.2.10 实例:挑战者号事故 52
2.2.11 正态分布 55
2.2.12 挑战者号事故当天发生了什么? 61
2.3 我们的模型适用吗? 61
2.4 结论 68
2.5 补充说明 68
2.6 习题 69
2.7 答案 69
第3章 打开MCMC的黑盒子 71
3.1 贝叶斯景象图 71
3.1.1 使用MCMC来探索景象图 77
3.1.2 MCMC算法的实现 78
3.1.3 后验的其他近似解法 79
3.1.4 实例:使用混合模型进行无监督聚类 79
3.1.5 不要混淆不同的后验样本 88
3.1.6 使用MAP来改进收敛性 91
3.2 收敛的判断 92
3.2.1 自相关 92
3.2.2 稀释 95
3.2.3 pymc.Matplot.plot() 97
3.3 MCMC的一些秘诀 98
3.3.1 聪明的初始值 98
3.3.2 先验 99
3.3.3 统计计算的无名定理 99
3.4 结论 99
第4章 从未言明的最伟大定理 101
4.1 引言 101
4.2 大数定律 101
4.2.1 直觉 101
4.2.2 实例:泊松随机变量的收敛 102
4.2.3 如何计算Var(Z) 106
4.2.4 期望和概率 106
4.2.5 所有这些与贝叶斯统计有什么关系呢 107
4.3 小数据的无序性 107
4.3.1 实例:地理数据聚合 107
4.3.2 实例:Kaggle的美国人口普查反馈比例预测比赛 109
4.3.3 实例:如何对Reddit网站上的评论进行排序 111
4.3.4 排序! 115
4.3.5 但是这样做的实时性太差了 117
4.3.6 推广到评星系统 122
4.4 结论 122
4.5 补充说明 122
4.6 习题 123
4.7 答案 124
第5章 失去一只手臂还是一条腿 127
5.1 引言 127
5.2 损失函数 127
5.2.1 现实世界中的损失函数 129
5.2.2 实例:优化“价格竞猜”游戏的展品出价 130
5.3 机器学习中的贝叶斯方法 138
5.3.1 实例:金融预测 139
5.3.2 实例:Kaggle观测暗世界 大赛 144
5.3.3 数据 145
5.3.4 先验 146
5.3.5 训练和PyMC实现 147
5.4 结论 156
第6章 弄清楚先验 157
6.1 引言 157
6.2 主观与客观先验 157
6.2.1 客观先验 157
6.2.2 主观先验 158
6.2.3 决策,决策…… 159
6.2.4 经验贝叶斯 160
6.3 需要知道的有用的先验 161
6.3.1 Gamma分布 161
6.3.2 威沙特分布 162
6.3.3 Beta分布 163
6.4 实例:贝叶斯多臂老虎机 164
6.4.1 应用 165
6.4.2 一个解决方案 165
6.4.3 好坏衡量标准 169
6.4.4 扩展算法 173
6.5 从领域专家处获得先验分布 176
6.5.1 试验轮盘赌法 176
6.5.2 实例:股票收益 177
6.5.3 对于威沙特分布的专业提示 184
6.6 共轭先验 185
6.7 杰弗里斯先验 185
6.8 当N增加时对先验的影响 187
6.9 结论 189
6.10 补充说明 190
6.10.1 带惩罚的线性回归的贝叶斯视角 190
6.10.2 选择退化的先验 192
第7章 贝叶斯A B测试 195
7.1 引言 195
7.2 转化率测试的简单重述 195
7.3 增加一个线性损失函数 198
7.3.1 收入期望的分析 198
7.3.2 延伸到A B测试 202
7.4 超越转化率:t检验 204
7.4.1 t检验的设定 204
7.5 增幅的估计 207
7.5.1 创建点估计 210
7.6 结论 211
术语表 213