logo
分类于: 人工智能 编程语言

简介

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning)

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning) 9.9分

资源最后更新于 2020-09-27 15:05:43

作者:Bernhard Schlkopf

出版社:The MIT Press

出版日期:2001-01

ISBN:9780262194754

文件格式: pdf

标签: 机器学习 核方法 MachineLearning Kernels 支持向量机与核方法 kernel 数学 支持向量机

简介· · · · · ·

In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tas...

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录