首页
登录/注册
编程语言
计算机基础
互联网
云计算&大数据
人工智能
设计
职场办公
注重体验与质量的电子书资源下载网站
标签名:
Data
出版日期:
2016-01
Practical Statistics for Data Scientists: 50 Essential Concepts
评分:
9.2
出版日期:
2011-01
DATA VISUALIZATION: Convey \ Clarify \ Construct
评分:
9.1
出版日期:
2015-01
Storytelling with Data: A Data Visualization Guide for Business Professionals
评分:
9.0
出版日期:
2011-01
Data Structures and Algorithm Analysis in Java: 3rd Edition
评分:
8.9
出版日期:
2020-01
Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing
评分:
8.9
出版日期:
2014-01
Mining of Massive Datasets: 2nd Edition
评分:
8.9
出版日期:
1999-01
Managing Gigabytes: Compressing and Indexing Documents and Images
评分:
8.8
出版日期:
2004-01
Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management
评分:
8.5
出版日期:
2016-01
The Truthful Art: Data, Charts, and Maps for Communication
评分:
8.3
出版日期:
2015-01
Advanced Analytics with Spark: Patterns for Learning from Data at Scale
评分:
8.3
出版日期:
2009-01
Beautiful Data: The Stories Behind Elegant Data Solutions
评分:
8.1
出版日期:
2011-01
Visualize This: The FlowingData Guide to Design, Visualization, and Statistics
评分:
8.0
出版日期:
2009-01
Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions
评分:
7.5
出版日期:
2018-01
Foundations of Data Science: A Practical Introduction to Data Science with Python
评分:
0.0
出版日期:
2016-01
Data Lake Architecture: Designing the Data Lake and Avoiding the Garbage Dump
评分:
0.0
出版日期:
2015-01
Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
评分:
0.0
出版日期:
2015-01
Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python
评分:
0.0
出版日期:
2016-01
Text Mining: A Guidebook For The Social Sciences
评分:
0.0
出版日期:
2013-01
The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling
评分:
0.0
出版日期:
2018-01
The Efficiency Paradox: What Big Data Can't Do
评分:
0.0
出版日期:
2019-01
企业数据湖
评分:
0.0
出版日期:
2016-01
Effective Data Visualization: The Right Chart for the Right Data
评分:
0.0
出版日期:
2014-01
R for Data Science
评分:
0.0
出版日期:
2019-01
Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations
评分:
0.0