注重体验与质量的电子书资源下载网站
分类于: 计算机基础 云计算&大数据 人工智能
简介
错觉: AI如何通过数据挖掘误导我们 豆 8.5分
资源最后更新于 2020-03-29 04:32:00
作者:〔美〕加里·史密斯(Gary Smith)
译者:钟欣奕
出版社:出版社中信出版社
出版日期:2019-11
ISBN:9787521709957
文件格式: pdf
简介· · · · · ·
在人工智能异常火热的今天,很多人认为我们生活在一个不可思议的历史时期,人工智能和大数据可能比工业革命更能改变人的一生。然而这种说法未免言过其实,我们的生活确实可能有所改变,但并非一定是朝好的方面发展。我们过于武断地认为计算机搜索和处理堆积如山的数据时不会出差错,但计算机只是擅长收集、储存和搜索数据,它们没有常识或智慧,不知道数字和词语的意思,无法评估数据库中内容的相关性和有效性,它们没有区分真数据、假数据和坏数据所需的人类判断力,没有分辨有理有据和虚假伪造的统计学模型所需的人类智能。计算机挖掘大数据风行一时,但数据挖掘是人为而非智能,也是非常艰巨、危险的人工智能形式。数据挖掘先是通过大量的数据走势、相关关系来发现让我们内心愉悦却无实践价值的模型,然后创造理论来解释这些模型。作者通过“史密斯测试”和“得州神枪手谬误”等实例说明,如果你挖掘和拷问数据的时间够长、数量够大,你总能得到自己想要的结果,然而这是相关关系却并不是因果关系,只是自我选择偏好,并没有理论基础也没有实用价值。在人工智能时代,我们对计算机的热爱不应该掩盖我们对其局限性的思考,真正的危险不是计算机比我们更聪明,而是我们认为计算机具有人类的智慧和常识,数据挖掘就是“知识发现”,从而信任计算机为我们做出重要决定。更多的计算能力和更多的数据并不意味着更多的智能,我们需要对人类的智慧有更多的信心。加里·史密斯(Gary Smith),波莫纳学院经济学教授,曾获弗莱彻·琼斯基金奖。他是耶鲁大学经济学博士,曾在耶鲁大学担任助理教授一职长达7年,两度获得教学奖,撰写(或合著)过80多篇学术论文和12本书,包括《数据科学的9个陷阱》《基本统计、回归和计量经济学》《标准偏差:有缺陷的假设,扭曲的数据,以及其他欺骗统计数据的方法》《简单统计学:如何轻松识破一本正经的胡说八道》《运气爆棚?偶然性在我们日常生活中的惊人作用》《货币机器:价值投资出奇简单的力量》。他的研究曾被彭博网、CNBC、《福布斯》、《纽约时报》、《华尔街日报》、《新闻周刊》和《商业周刊》竞相报道。
目录
引言
第1章 智能还是服从
井字游戏
国际跳棋
第2章 盲从
思考之源和思维之火
计算机是超人吗?
将时间考虑在内
识别像素与产生情绪
批判性思维
图灵测试
第3章 无语境的符号
翻译软件与理解语言
威诺格拉德模式挑战赛
计算机能阅读吗?
计算机能写作吗?
在语境中理解事物
猫与花瓶
第4章 坏数据
自我选择偏好
相关系数并非因果关系
时间的力量
幸存者偏差
假数据
识别“坏数据”
第5章 随机性模式
数据挖掘
黑匣子
大数据、大电脑、大麻烦
利益冲突
天生就会被骗
为模型所惑
第6章 如果你拷问数据的时间足够长
孟德尔的豌豆研究
得州神枪手谬误
数据挖掘者
拷问数据
倒摄回忆
金钱启动效应
寻找就会发现
微笑曲线
从卓越降为优秀
攻击性和吸引力
达特茅斯三文鱼研究
骗子,骗子
第7章 无所不包的“厨房水槽法”
预测总统大选
非线性模型
第8章 新瓶装旧酒
逐步回归法
岭回归法
数据规约
神经网络算法
被数学蒙蔽双眼
第9章 先吃两片阿司匹林
明早再给我打电话
我要再喝一杯咖啡
远程治疗
癌症群
最有理有据的疗法失效了
疾病诊断和治疗中的数据挖掘
糟糠过多,精粹不足
第10章 完胜股市(上)
噪声
滑稽的理论
技术分析
抛硬币
《每周华尔街》的十项技术指标
推特,推特
技术大师
为乐趣和盈利投资的黑匣子
第11章 完胜股市(下)
股市与天气
预留方案
真正的数据挖掘
趋同交易
高频交易
底线
第12章 我们都在监视着你
妊娠预测指标
谷歌流感
机器人测试仪
就业申请
招聘广告
贷款申请
汽车保险
社会信用评分
黑匣子式歧视
不合理的搜查
看看你的手环
你需要整容吗?
摆弄系统
共同毁灭原则
结语
参考文献