logo
分类于: 职场办公 人工智能

简介

Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more

Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more 0.0分

资源最后更新于 2020-09-27 15:05:50

作者:Maxim Lapan

出版社:Packt Publishing

出版日期:2018-01

ISBN:9781788834247

文件格式: pdf

标签: 强化学习 机器学习 AI 美国 历史 ML 2020

简介· · · · · ·

Recent developments in reinforcement learning (RL), combined with deep learning (DL), have seen unprecedented progress made towards training agents to solve complex problems in a human-like way. Google's use of algorithms to play and defeat the well-known Atari arcade games has propelled the field to prominence, and researchers are generating new ideas at a rapid pace.

Deep Rei...

想要: 点击会收藏到你的 我的收藏,可以在这里查看

已收: 表示已经收藏

Tips: 注册一个用户 可以通过用户中心得到电子书更新的通知哦

目录

Table of Contents:
What is Reinforcement Learning?
OpenAI Gym
Deep Learning with PyTorch
The Cross-Entropy Method
Tabular Learning and the Bellman Equation
Deep Q-Networks
DQN Extensions
Stocks Trading Using RL
Policy Gradients – An Alternative
The Actor-Critic Method
Asynchronous Advantage Actor-Critic
Chatbots Training with RL
Web Navigation
Continuous Action Space
Trust Regions – TRPO, PPO, and ACKTR
Black-Box Optimization in RL
Beyond Model-Free – Imagination
AlphaGo Zero